



## Engineering Site Investigation Using 2D Electrical Resistivity Imaging, K3 Area, Western Anbar Governorate

Sameer Sh. Abbas <sup>1\*</sup> 

<sup>1</sup>Anbar Education Directorate, Ministry of Education, Ramadi, Iraq.

### Article information

**Received:** 14- Oct -2024

**Revised:** 12- Dec -2024

**Accepted:** 15- Jan -2025

**Available online:** 01- Jan -2026

**Keywords:**

K3 Residential Complex, Sinkhole, Engineering Site Investigation, Weak Zones, Resistivity survey, Anbar Governorate.

**Correspondence:**

**Name:** Sameer Sh. Abbas

**Email:**

[sameershaker69@gmail.com](mailto:sameershaker69@gmail.com)

### ABSTRACT

Subsurface cavities and weak zones have a significant influence on the long-term feasibility of infrastructure and buildings; these problems must be considered before beginning construction of buildings and town decisions. Assessing the hazard associated with these cavities requires a greater understanding of the complex behavior of the karst structure, which is best developed in a region that absences indicators on the ground surface. This study investigates the subsurface characteristics in the K3 region using 2D electrical resistivity imaging (ERI) to recognize and describe underground structures. The data acquisition has been conducted manually along four 2D traverses, each 97 m long, using a dipole-dipole array with 20 electrodes spaced at 5 m apart. The data are processed using the RES2DINV software with a robust method to generate a 2D resistivity model. The results show distinct high-resistivity anomalies; these are suggestive of several cavities with a variety of depths from 3 to 15 m below the surface, with a width of 35 m. Also, several subsurface weak zones reveal that they are more severe at depths of 1.25-5 m below the ground surface. These zones associated with subterranean channels, cavities or sinkholes lead to issues with new construction and potential foundation subsidence. The investigation successfully charted the spatial distribution, depth, and approximate size of the detected cavities and weak areas. These findings have crucial importance to the assessment of geotechnical risk and urban planning in the K3 region; the efficacy of 2D ERI in the detection of subsurface structures is demonstrated.

DOI: [10.33899/injes.v26i1.60185](https://doi.org/10.33899/injes.v26i1.60185), ©Authors, 2026, College of Science, University of Mosul.

This is an open-access article under the CC BY 4.0 license (<http://creativecommons.org/licenses/by/4.0/>).

# استخدام تصوير المقاومة النوعية ثنائية الأبعاد للتحري الهندسي الموقعي في منطقة K3، غربي محافظة الانبار

سمير شاكر عباس<sup>1\*</sup> 

<sup>1</sup> مديرية تربية الانبار، وزارة التربية، الرمادي، العراق.

## الملخص

التكهفات تحت السطحية والمناطق الضعيفة لها تأثير كبير على الاستدامة طويلة الأجل للبنية التحتية والمباني، ويجب تقييم هذه القضايا قبل البدء في بناء وتحطيم المدن. تقييم الخطر المرتبط بهذه الكهوف يتطلب فهماً أعمق للسلوك المعقّد لنظام الكارست، والذي يتم تطويره بشكل أفضل في منطقة تتنفس إلى المؤشرات على السطح. يهدف هذا البحث إلى التحقيق في ظروف ما تحت الأرض في منطقة K3، باستخدام التصوير بالمقاومة الكهربائية ثنائية الأبعاد (ERI) لتحديد ووصف ميزات ما تحت الأرض. تم جمع البيانات يدوياً على طول أربعة مسارات ثنائية الأبعاد، كل منها بطول 97 متراً، باستخدام ترتيب ثنائي القطب - ثنائي القطب مع 20 قطبًا، والمسافة بين الأطاب تبلغ 5 أمتار. تمت معالجة البيانات باستخدام برنامج RES2DINV مع طريقة روبيوس لإنتاج مقاطع عرضية ثنائية الأبعاد للمقاومة النوعية. أظهرت النتائج شذوذات مقاومة عالية مميزة تشير إلى وجود العديد من التجاويف بعمق يتراوح ما بين 3 و 15 متراً متصلة بالسطح بعرض 35 متراً. بالإضافة إلى ذلك، تم الكشف عن عدة مناطق ضعيفة تحت السطح تكون أكثر حدة على أعمق تتراوح ما بين 1.25 و 5 أمتار تحت سطح الأرض، وهذه المناطق مرتبطة بالفنون الجوفية أو الكهوف أو الفجوات، مما يؤدي إلى مشاكل في المشاريع الجديدة واحتمالية هبوط الأسسات. نجح التحري في رسم التوزيع المكاني والعمق والحجم التقريري للتجاويف والمناطق الضعيفة المكتشفة. هذه النتائج لها أهمية حاسمة لتنقيم المخاطر الجيوبكينيكية والتحطيط الحضري في منطقة K3، وتظهر فعالية التصوير بالمقاومة النوعية الكهربائية ثنائية الأبعاد في الكشف عن التراكيب تحت السطحية.

## معلومات الارشفة

تاريخ الاستلام: 14- أكتوبر- 2024

تاريخ المراجعة: 12- ديسمبر- 2024

تاريخ القبول: 15- يناير- 2025

تاريخ النشر الإلكتروني: 01- يناير- 2026

### الكلمات المفتاحية:

مجمع كثري السكني،  
التحسينات،  
تحريات هندسية موقعة،  
مناطق الضعف،  
مسح المقاومة النوعية،  
محافظة الانبار،

### المراسلة:

الاسم: سمير شاكر عباس

Email: [sameershaker69@gmail.com](mailto:sameershaker69@gmail.com)

DOI: [10.33899/injes.v26i1.60185](https://doi.org/10.33899/injes.v26i1.60185), ©Authors, 2026, College of Science, University of Mosul.  
This is an open-access article under the CC BY 4.0 license (<http://creativecommons.org/licenses/by/4.0/>).

## Introduction

Engineering site investigations play a crucial role in assessing the ground conditions and determining avoid risks that may be encountered on an infrastructure project. This is important, especially in the K3 region, where the structures are mostly made of carbonate rocks (limestone and dolomite). These carbonate formations are particularly sensitive to chemical weathering as well as dissolution, which causes the evolution of karst features as subsurface cavities, sinkholes, and other types of voids (Sissakian and Al-Mousawi, 2007). Such features can pose a severe danger to the construction of buildings and engineering projects, human life, and the solidity of the ground, since the failure of these voids may cause ground subsidence and the sudden formation of sinkholes. Additional human involvement in the form of building and exploiting natural resources has increased the frequency of subsidence and sinkhole development (Gutierrez et al., 2008). In site investigation, geophysical techniques, including 2D Electrical Resistivity Imaging (ERI) procedures, are used more often to identify these hazards. 2D ERI is a geophysical method used for imaging the subsurface dependent on variations in electrical resistivity (Zhou et al., 2002; Chalikakis et al., 2011; Metwaly and Alfouzan, 2013; Abbas et al., 2024a). This

technique is useful in detecting underground features such as voids, cracks, water-saturated areas, weak areas, and layers of gypsum soil (Abdulrazzaq et al., 2020; Salman et al., 2020; Al-Jumaily et al., 2022). 2D ERI offers a clear image with great resolution to determine underground features and the suitability for building (Loke, 2004; Al-Saady et al., 2022; Elawadi, 2001). Also, this procedure is very useful in evaluating the possible subsidence or collapse risks, which are dangerous in planning for infrastructure and hazards (Ahmed et al., 2022; Abbas et al., 2024b). ERI provides a broader identification of such structures that are localized, which depends on a more continuous view of the ground conditions (Van Schoor, 2002; Dahlin, 2001). Many studies explained the efficiency of 2D ERI in several geohazard assessments (Berhi and Al-Saadi, 2024; Al-Awsi and Abdulrazzaq, 2022; Abed et al., 2021).

This study aims to determine subsurface geology, the location and extent of karst features, and evaluate their potential effects on safe engineering and construction projects using two-dimensional electrical resistivity imaging.

### Location of the Study Area

The studied area is located in the K3 area between Baghaldi and Haditha districts within Anbar Governorate, about 177 Km west of Ramadi City (Fig. 1). It is located in the western part of Iraq along the Euphrates River. The topographic elevation of the K3 area is about 175 meters above sea level. It is mostly flat with undulations and occasional escarpments, which have been built through layers of sedimentary rocks. Geologically, the studied area includes the Anah Formation and Euphrates Formation (Fig. 2). The Anah Formation (Late Oligocene–Early Miocene) is represented by hard recrystallized reefal limestone rocks, which are overlain by white porous limestone rocks at the top, having a thickness of about 7 m (Al-Ghreri, 2007). The base of the formation in the area is conformable, while the top contact is always of an angular unconformity with the Euphrates Formation. Euphrates Formation (Early Miocene - Middle Miocene) comprises a basal conglomerate fining upward with 3 m thick, besides the layers of oolitic limestone, dolomitic limestone in the upper part with 18 m thick (Al-Ghreri, 2007; Alrawi et al., 2023). The Formation is sitting unconformably above Oligocene layers by the basal conglomerate with a thickness ranging between 1 to 5 m. These conglomerates are composed of pebbles that originated predominantly from the Anah Formation (Al-Ghreri, 2007).

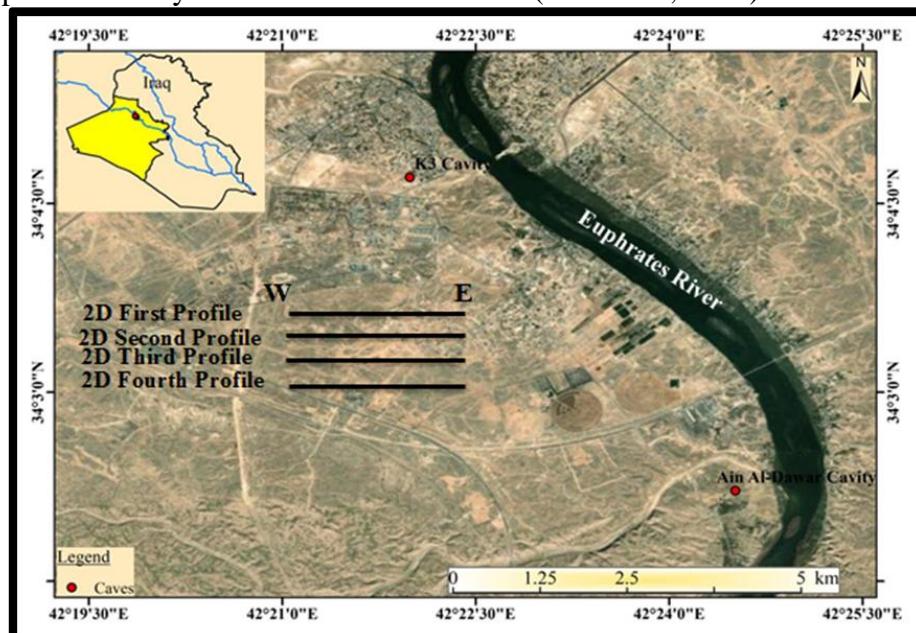



Fig. 1. Location of the studied site with a 2D resistivity profile survey.

| AGE           | FORMATION | THICKNESS(m) | LITHOLOGY | DESCRIPTION                                                                             |
|---------------|-----------|--------------|-----------|-----------------------------------------------------------------------------------------|
| Early Miocene | Euphrates | 4            |           | Dolomitic limestone, white to whitish grey in colour.                                   |
|               |           | 8            |           | Oolitic limestone, white in colour, Oolitic-Peloidal, a lagoonal miliolid facies.       |
|               |           | 19           |           | Basal brecciate, dominantly coralline limestone                                         |
|               |           | 1            |           | Limestone, showing algal reef facies, a lagoonal miliolid facies, white recrystallized. |

Fig 2. Stratigraphic column of the studied site (Al-Jibouri et al., 2022).

## Materials and Methods

A 2D electrical resistivity imaging survey has been conducted using ABEM Terrameter SAS 4000 to delineate the subsurface condition of the studied area. Field resistivity data were acquired using four 2D imaging profiles with a dipole-dipole array (Fig. 3). The 2D resistivity data are manually created and oriented in the W-E direction. Where the number of electrodes, spacing, the distance between profiles, and n-factor are 20, 3, 15, and 6, respectively. The profile's survey depth is estimated at 19.58 m with a 97 m. These profiles were generated using the Electra Pro program. The resistivity measurements were used to construct the pseudo-section to provide a 2D image of the subsurface, and the data processing was performed using the RES2DINV program. The inversion routine is based on the smoothness-constrained least squares method using finite difference forward modeling and Quasi-Newtonian techniques (Loke et al., 2003). In these methods, the subsurface is segmented into a set of dimensional blocks, where cell size increases with depth (Fig. 4). Inversion procedures use numerical techniques to generate a subsurface resistivity model that best fits the available data set. The conventional least-squares optimization method is often used in inversion algorithms to solve the non-uniqueness problem in order to construct a good 2D inverse model to which the data should be homogeneous (Loke and Dahlin, 2002).

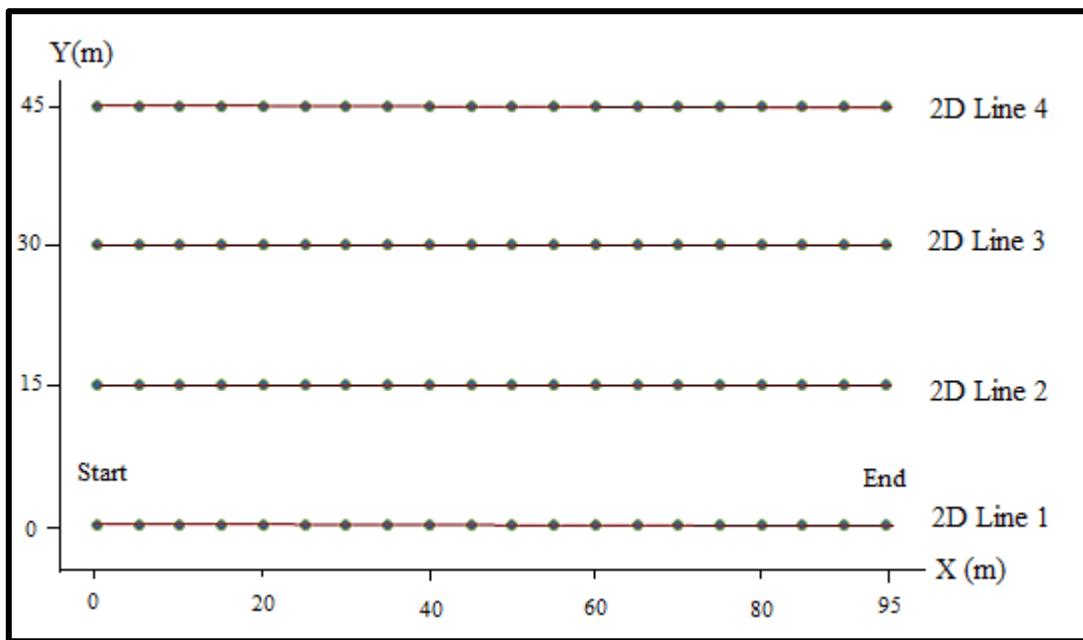



Fig 3. Four 2D imaging profiles were surveyed using a dipole-dipole array in the studied area.

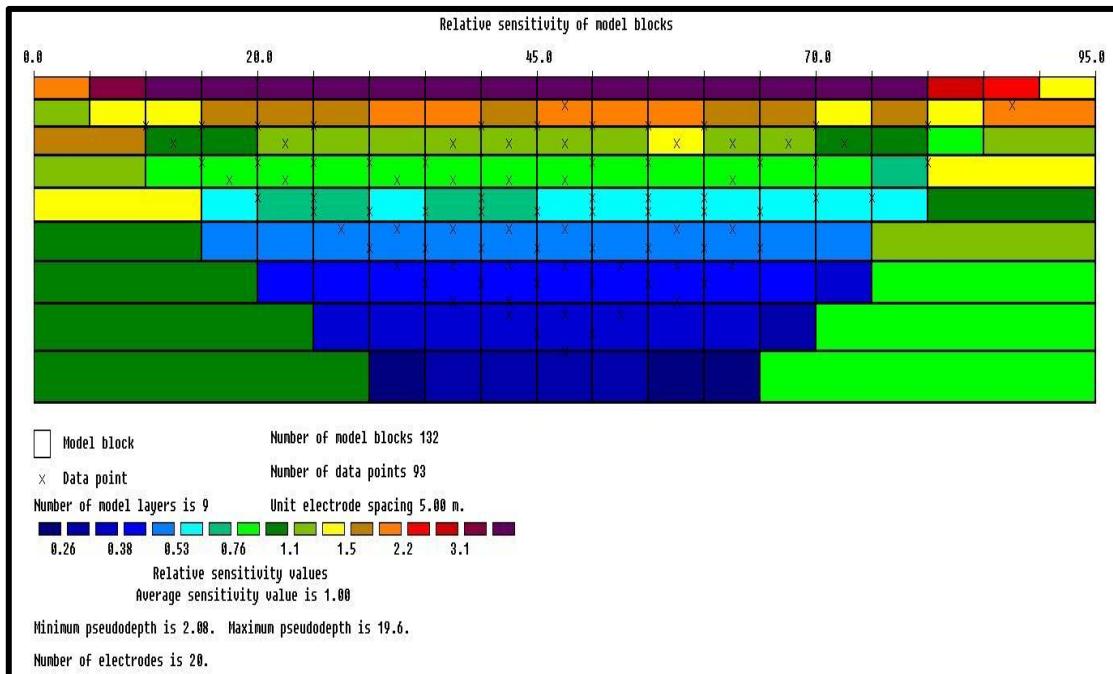



Fig 4. 2D block of subsurface studied area in profile- 2.

## Results and Discussion

The first model (Fig. 5) represents a weathering zone near the earth's surface characterized by a lower resistivity value of  $20.4 \Omega\text{m}$ . This low resistivity is due to increased water content. Areas of high resistivity values ranging from  $145$  to  $527 \Omega\text{m}$  indicate the presence of voids or cavities within the subsurface. The first cavity is located to the left of the survey line and has high resistivity values ranging from  $145$  to  $275 \Omega\text{m}$ . This cavity starts at a depth of about  $3$  m and extends to about  $11$  m below the surface. A larger cavity is present on the right side of the survey line, approximately  $60$  m to  $85$  m away from the starting point. This cavity extends to a depth of approximately  $10$  m. The high resistivity values within the cavity may be relatively dry, which has a higher resistivity than the surrounding rocks. There are some small caves in the middle of the survey line with irregular shapes and boundaries.

The limits of caves are more obvious on the left side, indicating that the voids are more distinct or better defined than those on the right side.



Fig 5. 2D resistivity inverted model for the first profile.

The second model (Fig. 6) reveals the presence of multiple subsurface cavities and a shallow weak zone characterized by varying degrees of resistivity. The areas in the left model exhibit high resistivity values ranging from 145 to 454  $\Omega\text{.m}$  at distances between 12-28 m and a depth of 3 -11 m, which may represent a dry cavity or a sediment-filled cavity. In the middle section of the model, there are variable resistivity values at distances of 38-55 m and a depth of 5- 15 m. These variations are interpreted as indicative of a cavity. The right side of the model shows a very high resistivity value at a distance between 60- 85 m with a depth extension of approximately 16 m. These extreme values represent a major cavity. Areas along the model with small low resistivity values are interpreted as small caves or voids, while areas with very low resistivity values are indicative of a weathered zone due to an increase in moisture content within the rocks.



Fig 6. 2D resistivity inverted model for the second profile.

The third model (Fig. 7) indicates three main cavities. The first cavity is located on the left side of the model, recognized by a high resistivity value of 187  $\Omega\text{.m}$ . This cavity appears at a distance between 13 to 24 m and a depth of 2- 7 m. A second cavity is located in the middle section at a distance of 48- 58 m and a depth of 6 to 16 m. The last cave is found on the right side of the model, with a very high resistivity value of 389  $\Omega\text{.m}$ . It is located at a distance of 60 m to 83 m with a depth ranging from 3 to 10 m. Also, the model shows numerous weathered zones and voids on both right and left sides of the main cavities. These areas exhibit low resistivity values ranging from 0.606  $\Omega\text{.m}$  and 2.21  $\Omega\text{.m}$ .

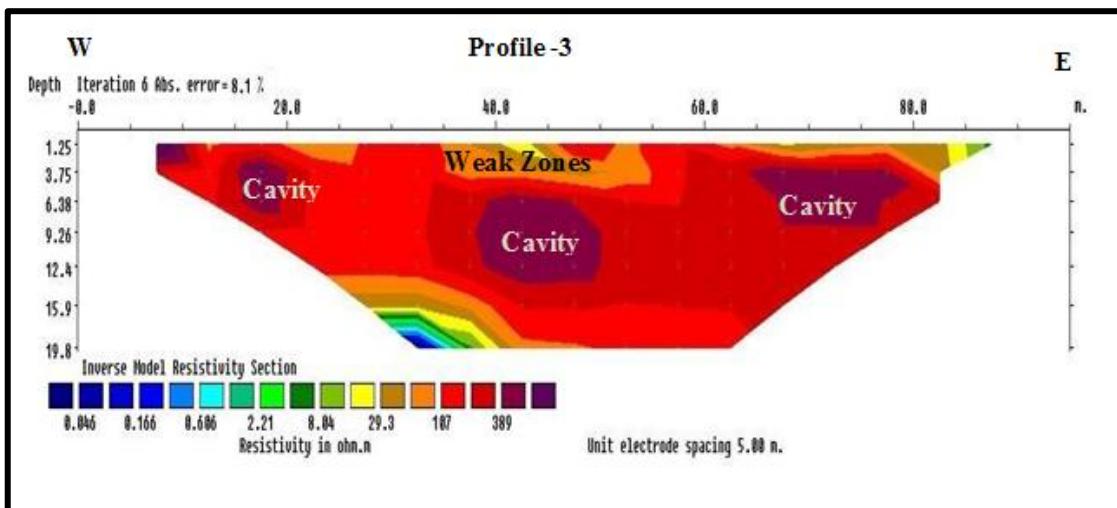



Fig 7. 2D resistivity inverted model for the third profile.

The fourth model (Fig. 8) displays two near-surface caves that are distributed over the left and right sides of the model. These caves are distinguished by high resistivity values that are greater than  $345 \Omega\text{m}$ . It is located at distances 12-40 m and 55-82 m, respectively, with a depth of 4-16 m and 3-14 m, respectively. There are greater dangers in the meters study area for new construction stretches to a depth of about twelve meters. Resistivity begins to decrease beyond this depth.

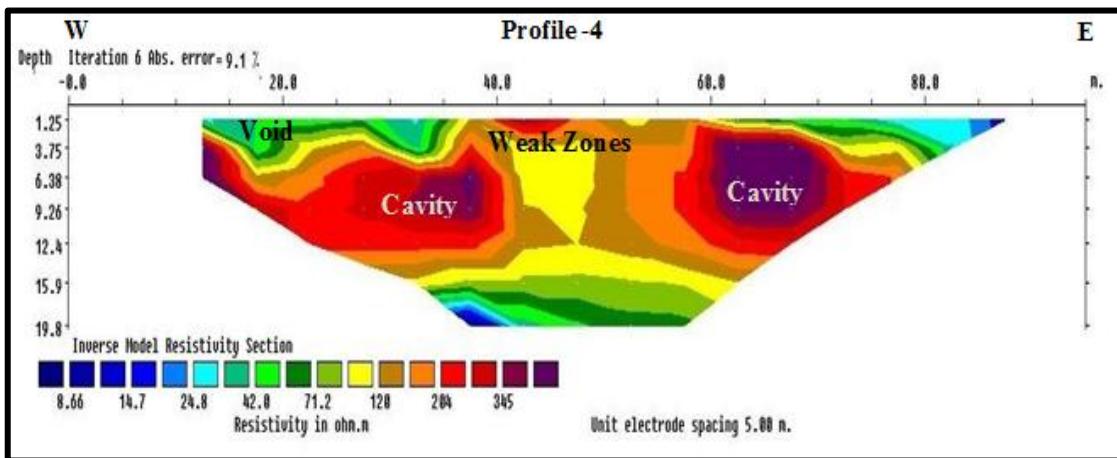



Fig. 8. 2D resistivity inverted model for the fourth profile.

## Conclusion

The engineering site exploration using 2D electrical resistivity imaging has considered important findings relevant to geotechnical assessments. The studied area comprises predominantly limestone, which has an excessive increase in activity. Exploring the depth of the shallow weak zones and imaging the risk of subsurface cavities are important procedures before building and surface foundation structure. The study effectively detects differences in resistivity, which is representative of the presence of possible cavities, weak areas, voids, and cracks within the Euphrates Formation that pose risk areas for building and the safety of the structure. All 2D models suggest substantial anomalies as markers for these cavities, with several depths documented below the surface, starting from 3 m and extending down to more than 15 m. Additionally, various subsurface weak areas and cracks are designated through low and intermediate resistivity values, representative potential areas of instability. These regions are recognized to be more obvious at depths between 1.25 m and 5 m below the surface, suggesting complex geological settings that may include dissolution developments through groundwater movement. The description of underground cavity and weak zones

emphasizes areas that may comprise risks to structural integrity and require more research using geotechnical assessment.

## Acknowledgements

The author would like to thank Mr. Mustafa Jumah and Mr. Saad Jumah for their valuable help in the fieldwork of this research. Also, thanks are extended to Mr. Aseel Mohamed for providing geological data of the studied area, which is essential to complete the research.

## References

Abbas, S.S., Al-Saady, H.A. and Al-Mahemmdi, W.D., 2024a. An Attempt to Delineate Subsurface Ain Aldawar Cavity Using 2D Electrical Resistivity Imaging Method in Haditha Area, Western Iraq. *The Iraqi Geological Journal*, 57 (1F), pp. 47-52. <https://doi.org/10.46717/igj.57.1F.4ms-2024-6-13>

Abbas, S.S., Al-Mahemmdi, W.D. and Al-Saady, H.A., 2024b. Caves and Fractured Zones Investigation Using 2D Electrical Resistivity Imaging in an Engineering Site, Haqlaniyah, Western Iraq. *The Iraqi Geological Journal*, 57 (2E), pp. 33-40. <https://doi.org/10.46717/igj.57.2E.3ms-2024-11-12>

Abdulrazzaq, Z.T., Al-Zubedi, A.S. and Abed, A.M., 2020. Detected of gypsum soil layer by using 2d and 3d electrical resistivity imaging techniques in University of Anbar, Iraq. *The Iraqi Geological Journal*, 53(2C), pp. 134-144. <http://dx.doi.org/10.46717/igj.53.2c.10Rs-2020.09.10>

Abed, A.M., Thabit, J.M. and Al-Menshedy, F.H., 2021. An attempt to image Um El-Adam cavity structure in the karst terrain at hit area, Western Iraq. *The Iraqi Geological Journal*, 54(1A), pp. 44-54. <https://doi.org/10.46717/igj.54.1A.5Ms-2021-01-26>

Ahmed, M.M., Abbas, S.S., Abed, A.M. and Al-Menshedy, F.H., 2022. Application of 2D and 3D Electrical Resistivity Imaging Techniques for Site Investigation in Ramadi City, Western Iraq. *IOP Conference Series: Earth and Environmental Science*, IOP Publishing, 1080 (1), 012011. <https://doi.org/10.1088/1755-1315/1080/1/012011>

Al-Awsi, M.D. and Abdulrazzaq, Z.T., 2022. Implementing electrical resistivity tomography to delineate soil contamination zone, Southern Baqubah City, Iraq. *Kuwait Journal of Science*, 49(2), pp. 1-15. <https://doi.org/10.48129/kjs.10674>

Al-Ghreri, M., 2007. Biostratigraphic succession of the formations of Euphrates Valley between Hit and Al-Qaim in Iraq. 121 P.

Al-Jibouri, A.S., Al-Halboosi, J.M.H. and Abed, A.M., 2022. Detection of Haqlaniyah cave within carbonate stratigraphic sequence rocks using 2D resistivity imaging technique, Haditha, western Iraq. *IOP Conference Series: Earth and Environmental Science*. IOP Publishing, 1080 (1), 012017. <http://dx.doi.org/10.1088/1755-1315/1080/1/012017>

Al-Jumaily, O.H., Abed, A.M. and Ali, K.K., 2022. Detection of Shallow Cavities Using 3D Resistivity Technique in a Small Site Near Haditha City, Western Iraq. *Iraqi Journal of Science*, 63(4), pp. 1557-1564. <https://doi.org/10.24996/ij.s.2022.63.4.16>

Al-Saady, H.A., Karim, H.H. and Al-Menshedy, F.H., 2022. Comparison of Three Electrical Resistivity Arrays to Investigate Weak Zones in Soil, Along a Profile Southeast Baghdad City, Iraq. *Iraqi Journal of Science*, 63(11), pp. 4793-4798. <https://doi.org/10.24996/ij.s.2022.63.11.18>

Alrawi, S.S., Kadhim, L.S. and Al-Hadaithy, A.A., 2023. Mineralogy and Geochemistry of Anah and Euphrates Formations and Their Suitability for Portland Cement and Noora Industry at Al-Baghdadi and Haditha Areas, Western Iraq. The Iraqi Geological Journal, 56(2D), pp. 177-186. <https://doi.org/10.46717/igj.56.2D.14ms-2023-10-20>

Berhi, F.Z. and Al-Saadi, O.S., 2024. Electrical Resistivity Synthetic Modeling and Field Survey for Subsurface Features Investigation of the Borsippa Archaeological Site, Babylon Governorate, Middle Iraq. The Iraqi Geological Journal, 57 (1F), pp. 33-46. <https://doi.org/10.46717/igj.57.1F.3ms-2024-6-12>

Chalikakis, K., Plagnesl, V., Guerin, R., Valois, R. and Bosch, F.P., 2011. Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeology Journal, 19(6), pp. 1169-1180. <https://doi.org/10.1007/s10040-011-0746-x>

Dahlin, T., 2001. The development of DC resistivity imaging techniques. Computers and Geosciences, 27(9), pp. 1019-1029. [https://doi.org/10.1016/S0098-3004\(00\)00160-6](https://doi.org/10.1016/S0098-3004(00)00160-6)

Elawadi, E., 2001. Detection of Cavities Using Pole-Dipole Resistivity Technique. Kyushu University.

Gutierrez, F., Cooper, A.H. and Johnson, K.S., 2008. Identification, prediction, and mitigation of sinkhole hazards in evaporite karst areas. Environmental Geology, 53, pp. 1007-1022. <http://dx.doi.org/10.1007/s00254-007-0728-4>

Loke, M.H. and Dahlin, T., 2002. A comparison of Gauss-Newton and Quasi-Newton methods in resistivity imaging inversion. Journal of applied geophysics, 49(3), pp. 149-162. [http://dx.doi.org/10.1016/S0926-9851\(01\)00106-9](http://dx.doi.org/10.1016/S0926-9851(01)00106-9)

Loke, M.H. 2004. Tutorial: 2-D and 3-D Electrical Imaging Surveys.

Loke, M.H., Acworth, I. and Dahlin, T., 2003. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration geophysics, 34(1), pp. 182-187. <https://doi.org/10.1071/EG03182>

Metwaly, M. and Alfouzan, F., 2013. Application of 2-D geoelectrical resistivity tomography for subsurface cavity detection in the eastern part of Saudi Arabia. Geoscience Frontiers, 3(4), pp. 469-476. <https://doi.org/10.1016/j.gsf.2012.12.005>

Salman, A.M., Thabit, J.M. and Abed, A.M., 2020. Application of the electrical resistivity method for site investigation in University of Anbar, Ar-Ramadi City, Western Iraq. Iraqi Journal of Science, 61(6), pp. 1345-1352. <https://doi.org/10.24996/ij.s.2020.61.6.12>

Sissakian, V.K. and Al-Mousawi, H.A., 2007. Karstification and related problems, examples from Iraq. Iraqi Bulletin of Geology and Mining, 3(2), pp. 1-12.

Van Schoor, M. 2002. Detection of sinkholes using 2D electrical resistivity imaging. Journal of applied geophysics, 50, pp. 393-399. [https://doi.org/10.1016/S0926-9851\(02\)00166-0](https://doi.org/10.1016/S0926-9851(02)00166-0)

Zhou, W., Beck, B.F. and Adams, A.L., 2002. Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environmental geology, 42, pp. 922-928. <http://dx.doi.org/10.1007/s00254-002-0594-z>