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Forecasting air quality in urban areas is complex due to difficulties in
accurately defining emission flux density and the meteorological fields.
Combustion gases from human and social activities are the most significant
sources of PM 2.5, which is a major air pollutant. Accurate and reliable
prediction of PM 2.5 levels is crucial for assessing health risks. Forecasting
PM2.5 daily concentration, in general, has been predicted by Random
Forest (RF) as a machine learning algorithm. However, the RF
performance is highly sensitive to the choice of its hyperparameters, which
usually necessitates careful tuning. Consequently, searching for the optimal
set of RF hyperparameters constitutes an essential step when attempting to
improve model efficiency. Various techniques have come into view for
effective hyperparameter tuning of RF. Meta-heuristic optimization
methods, with their strong local search abilities, can prevent the training
network from getting trapped in local optima and increase the likelihood of
identifying the global optimum. This paper proposes employing the Coati
Optimization Algorithm (COA), a meta-heuristic approach, to improve RF
hyperparameter determination, and, consequently, forecasting PM 2.5
concentrations. Daily PM 2.5 concentrations in Baghdad, Iraqg, from 2019
to 2023 are gathered to train RF models and assess the proposed COA
performance. The effectiveness of COA is estimated using several metrics.
Overall, our proposed COA approach demonstrates superior performance
in terms of evaluation criteria compared to other methods in both training
and testing daily PM 2.5 concentrations.
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Introduction

Air pollution gives rise to environmental issues such as global warming, depletion of the
ozone layer, and the occurrence of acid rain. Air quality degradation, particularly in urban
regions, arises from swift industrialization, infrastructure expansion, and urban development.
While these advancements aim to accommodate the rapid population growth in these areas,
they concurrently generate detrimental effects on human health and the environment equally
(Jamil and Shehab, 2021; Wood, 2022).

In this regard, high population density is normally linked to high air quality degradation
resulting from increased energy consumption, which can be attributed to both residential and
industrial activities. Some major sources of this problem are the use of fossil fuels for power
generation and heating purposes, which leads to the release of greenhouse gases (such as ozone,
methane, carbon dioxide, nitrogen oxides), sulphur oxides, and particulate matter into the
atmosphere (Wang et al., 2019). Moreover, increasing numbers of vehicles across cities, which
has become the cause of congestion, worsened air quality and have strong effects on locals
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(Mohd Shafie et al., 2022). Exposure to outdoor air pollution, largely due to PM2.5, has led to
an estimated 3.3 million premature deaths annually across the globe, with a possible doubling
of that number by 2050 (Lelieveld et al., 2015).

PM 2.5 is among the major environmental air contaminants, characterized by small size,
high toxicity, easy diffusivity, and long suspension time in the air (Xu et al., 2022), which
seriously threatens the environment, human health, and socio-economic contexts. PM2.5 not
only carries harmful compounds but also travels extensively across distances, carrying an
appreciable effect on air quality and visibility (Tsurumi and Managi, 2020). Exposure to PM2.5
raises the risk of cancer, respiratory, and cardiovascular diseases, which are major threats to
human health.

Precise and efficient prediction of future PM2.5 levels holds considerable importance in
environmental management (Wang et al., 2024). Human activities associated with fossil fuel
consumption in transportation, power generation, heating/cooling, and various industrial
processes are primary sources of anthropogenic PM2.5. Additionally, events like crop-residue
burning, human-induced forest fires, and deforestation-related dust storms intermittently
contribute significantly to PM2.5 levels in specific regions (Tian et al., 2021; Wood, 2022). The
complexity of atmospheric conditions, including temperature inversion layers and thermal
updrafts, significantly influences the accumulation or dispersion of air pollutants. However,
these intricacies often elude customary meteorological measurements (Murthy et al., 2020).

PM2.5 concentration forecasting models have gained increasing interest and have been
continuously updated and redeveloped in recent years. For environmental protection
supervision, it is critically required that PM2.5 concentrations are continuously monitored in
real time, which requires reliable methods for forecasting to determine whether air quality
standards are met (Wu et al., 2022). The accurate forecast of spatiotemporal variations of air
pollution requires intricate algorithms in addressing the complexities of tracking this type of
pollution (Muthukumar et al., 2022). Researchers cited the need for strong estimation models
that would analyse levels of air pollution to give meaningful insights and aid in informed policy
formulation (Southerland et al., 2022). Therefore, it is very critical to adopt new data-driven
methodologies so as to achieve high accuracy in air quality predictions.

Of late, deep learning as well as machine learning have been placed among the most
important tools in earth and environmental sciences (Faisal and Shehab, 2025; Shehab and
Faisal, 2025; Zhong et al., 2021). They were applied to many complex tasks, like urban flood
prediction (Kao et al., 2021), estimation of water quality (Algamal et al., 2025; Jamil and
Shehab, 2021; Najah Ahmed et al., 2019; Shehab et al., 2024), and regional air pollution
forecasting (Wong et al., 2021). These technologies have greatly improved the ability to
forecast PM 2.5 levels and issue warnings on air pollution. Some algorithms of machine
learning, namely SVM as well as RF, have already shown a huge potential in PM 2.5 forecasting
because of their excellent ability to learn complex variable patterns and relationships. That
capacity easily permits the perfect capturing of nonlinear dynamics within the PM 2.5
concentration series and, therefore, better accuracy in its forecasting (Wang et al., 2024). Such
models can clearly be a great alternative to the traditional atmospheric models, which are
inventory-based because they use statistics and are not limited by the presence of extensive
inventories (Feng et al., 2020). An ensemble learning method, the RF algorithm is employed in
this research due to its great flexibility in PM 2.5 forecasting. On that note, its strength in
adaptability to handle complex relationships within data averts overfitting, a common problem
in most machine learning models.

This research thus aims to go beyond the limitations associated with short-term and coarse
temporal resolution in prediction and provide a method that will enable the building of a robust
model for the prediction of daily variations reliably and accurately. This paper focuses on the
development and extension of precise models for the forecasting and prediction of PM 2.5

182



183

Zakariya Nafi Shehab et al

concentrations using an RF model based on environmental and meteorological variables. For
this purpose, daily data are used from a ground-level sensor at Baghdad U.S. Embassy, located
in one of the most highly congested areas within Baghdad, Irag. This dataset will form the basis
for training, testing, and validation of the model proposed herein. This dataset contains daily
measurements of PM 2.5 for four years.

Data and methods
Study area

The daily PM2.5 average concentration dataset was compiled from the Baghdad U.S.
Embassy air quality monitoring station from 1st March 2019 to 1st June 2023. Undoubtedly,
the data obtained from the singular monitoring post are solely indicative of the immediate
conditions of the city centre, providing a comprehensive urban outlook but struggling to identify
specific pollution hotspots within the city. Baghdad stands as the largest urban centre in Iraq
(Fig. 1), accounting for about 22% of the national population, and therefore encounters
substantial air pollution threats stemming from different sources such as vehicle emissions,
industrial activities, power generation, open burning, and waste disposal. This has led to an
upward trend in average yearly PM 2.5 concentration spanning over the previous ten years.
Baghdad was ranked among the most polluted cities, depending on PM2.5 concentrations
globally in 2022.
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Fig. 1. Map of Baghdad highlighting metropolitan areas and municipalities.
Random Forest algorithm

RF has developed into a robust as well as versatile tool in the machine learning landscape,
demonstrating remarkable performance in diverse applications and employed in regression and
classification tasks equally (Hasnain et al., 2023). This technique gains from the power of
ensemble learning by creating an ensemble of decision trees, each of them trained on a
dissimilar random subset of training data. This will then merge the predictions of multiple
decision trees, reducing overfitting, generally providing an increase in accuracy and a boost in
the robustness of the model. The algorithm creates multiple bootstrap samples around the
training data by randomly drawing subsets of it with replacement. A decision tree is built for
each bootstrap sample. Inherent in the tree induction process: at each split, instead of




Forecasting PM2.5 Daily Concentration in Baghdad, Iraq Based on Improving Random Forest Algorithm

considering all features, the algorithm randomly selects a subset of features to consider at each
node. This randomness in features goes a step further in reducing overfitting and increasing the
variety of the forest. In prediction, each tree in the forest casts a vote (Josso et al., 2023). For
classification, it chooses the most common class among the trees as a prediction. It uses the
average of all trees' predictions for regression. RF is found to be at par with other state-of-the-
art performance measures across a wide array of tasks all the time. Its ensemble nature reduces
overfitting and improves generalizability, hence more reliable predictions. Besides, it is
resistant to noise and outliers in data, retaining its accuracy even on challenging datasets (Yang
etal., 2020). The RF also gives the significance of distinct features so that one can see the logic
of the model's decision process. Then, the power of RF is that, with its adaptability and
flexibility, it can be employed for both regression and classification tasks, which very much
extends the domains of problems it is useful for.

The proposed improvement

Hyperparameters are those parameters that require defining before implementing an
algorithm or before running an algorithm (Khalid and Javaid, 2020). In the case of Data Science,
tuning of hyperparameters is one of the significant stages in the workflow. Done correctly,
hyperparameter tuning can indeed take a worthless model and turn it into a model ready for
production to make real decisions (Probst et al., 2019; Singh et al., 2021).

The identification of the appropriate hyperparameters plays a crucial part in the RF
prediction accuracy and learning time (Daviran et al., 2021). However, the decision-making of
the right combination of hyperparameters is very critical and consumes a lot of time (Zhu et al.,
2022).

Tuning hyperparameters manually consumes a lot of time, and at the same time, a manual
process needs a deeper understanding of the RF algorithm as well as its hyperparameters. As
for the issues regarding the manual specification of hyperparameters, it is necessary to use
hyperparameter optimization to search for the best configuration automatically (Ge etal., 2023).
The methods to apply to find the values of the hyperparameters include randomized search
(RS), Bayesian optimization (BO), cross-validation (CV), and grid search (GS). This process
was previously conducted for all the possible combinations of hyperparameters, and the set of
hyperparameters that yielded the best results in the chosen criterion was returned. However,
these approaches are computationally expensive, and they do not exhaust all the possible
combinations of hyperparameters (Abdulsaed et al., 2023).

Hence, there is a need for better and more effective methods for hyperparameter tuning
for RF. Over the last few years, metaheuristic optimization algorithms have been extensively
applied for solving the problem of hyperparameter tuning (Abdulsaed et al., 2023; Algamal et
al., 2021). Recently, various new nature-inspired algorithms were proposed by researchers to
extend and upgrade the exploration and exploitation of the existing algorithms. The Coati
Optimization Algorithm (COA) has emerged as one of the most popular because of its high
efficiency (Dehghani et al., 2023; Jia et al., 2023).

COA is a population-based metaheuristic approach, where each coati represents an
individual within the population. The location of each coati within the search space affects the
decision variables' values. Therefore, in COA, coatis serve as potential solutions to the problem
at hand. Initially, the coatis are randomly placed within the search space as defined thereafter
(Dehghani et al., 2023):

X; X, =Lb, +r*@Ub, -Lb;), i =12...,N;j=12....m (1)

One interesting behavior in this exploration phase is that one group of coatis climbs the
tree to scare the iguana down to ground level, where others are waiting to capture it. This
behavior shows the ability of the algorithm to explore or examine certain aspects in a particular
context. The algorithm mimics the behavior based on the notion that half the population climbs
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the trees to force the iguana down, and the remaining half wait at ground level to catch the
iguana as it falls, and it looks like the following Eq. (2).

XX =X 4 * (1 =9*X )i =12, N 72];j=12...m ()

Once the iguana drops to the ground, it is assigned a random position (|G) within the
search space, and the coatis under the tree adjust their position according to Egs. (3) and (4). If
the objective function value at the new position calculated for each coati is an improvement
over the current value, the new position is accepted. Conversely, if the new position yields a
worse objective function value, the coati remains in its original position (Eg. 5) (Dehghani et
al., 2023).

1°:17 =Lb, +r*WUb, —Lb,),j =12,........ ,m (3)

X +r*(17=9*x ), F(I°)<F(X))
XX =g ¥
¥ X”+I’*(X”—|?)’else

|2

with i :{N?}+1{—}+2, ..... N,j=12,...m

« :{xinew,F(XineW)<F(xi) (5)

X, else

where: X, is the current position of the i coati, X " is the newly calculated position

for the i coati, 1© is the randomly generated position of the iguana, F is the objective function
value.

In the next phase, the exploitation phase, the behavior of coatis employing a predator-
escape strategy is described. This strategy keeps the coati close to its current position and in a
safe stance, enhancing the algorithm's exploitation capability. To accomplish this, a random
position is created near each coati using Egs. (6) and (7). If this newly generated position results
in an improved objective function value, the coati assumes the new position; otherwise, it
retains its original position (Eq. 5).

local __ Lbj local _Ubj _
Lbled = =71 ypled =270 t=12,....T (6)
) t ! t

new . new local local local H H
XX =X+ (@=2%r)*(Lb ™™ +r *Ub™ —Lb™)),i =1,2,..,N, j =1,2,.,m (7)

To optimize the hyperparameters of RF using COA as an improvement proposition, the
position vector X of each coati is defined as a vector with dimension D, representing the coati's
position in the COA. Consequently, each vector X corresponds to a specific configuration of
the RF, with each dimension of X representing a distinct hyperparameter of the RF. Therefore,
we have five positions that each coati in the swarm will search for them. Consequently, our
proposed improvement is as follows:

Step 1: The number of coatis, N
is T =500.
Step 2: The positions of each coati are randomly specified. For the number of trees in the

forest (Nurees), the position is randomly generated from a uniform distribution between 10 and
100. While for the minimum number of samples at leaf node (MNeaf) and for the minimum

, is set to 30, and the maximum number of iterations

coati
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number of samples considered to split an internal node (MNinemar), the position for each one is
randomly generated from a uniform distribution within the range [1,25] and range [2,20],
respectively. Further, the position of the maximum depth of the tree (Muee) is randomly
generated from a uniform distribution between 1 and 200. Finally, the number of features
(Nreatures) taken for the best split is considered depending on the number of lags of the series. A
representation of the coati position (Fig. 2).

Step 3: The fitness function is defined as

) N L. R 2
fltneSS = ml n |:H z (y i o y i (Ntrees 'MNIeaf ’MNinternaI 'Mtree ’Nfeatures)) ' (8)
i=1

Step 4: The positions of the coati are updated using Eq. (4) and Eq. (7), respectively.
Step 5: Steps 3 and 4 are repeated until a T is reached.

I Ntrecs I MNleaf I MNinternal I Mtrcc I Nfeatures I

\ )
|

RF hyperparameters

Fig. 2. Position of each coati in the COA algorithm.
Forecasting evaluation criteria

Four assessment measures, RMSE, MAE, direction accuracy (DA), and R? are adopted
in this research to estimate the effectiveness of the projected forecasting method. Their simple
mathematical expressions (Table 1).

Table 1: Forecasting evaluation criteria.

Evaluation criterion Mathematical formula
13 R
MAE =y -V
n iz
13 a2
RMSE —Z(yt—yt)
n iz
n 1 if - /. —Vy.)>0
oA lzzt’ 7 = (Vi yt)(yt.+1 i)
ni= 0, otherwise

. 1—[i(yt 3 207 )ﬂ

Results analysis

Our goal in using our proposed approach, COA, is to demonstrate that an adequate choice
of hyperparameters can produce better PM2.5 daily concentration forecasting. Comprehensive
comparison tests using RS, BO, CV, and GS are used to examine the forecasting performance
of our proposed algorithm, COA.

The data are divided into two sets: the training data set, including 1270 PM2.5 daily
concentrations (from 1 March 2019 to 31 December 2022), and the testing data set, including
151 PM2.5 daily concentrations (from 1 January 2023 to 1 June 2023). Figures (3 and 4) depict
the daily PM2.5 concentrations’ pattern over time for the training and testing data sets. Both
figures proved that the daily PM2.5 concentration pattern is nonlinear and non-stationary over
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time. The descriptive statistics for both training and testing data sets (Table 2) were used to
investigate the behavior of daily PM2.5 concentrations. The daily PM2.5 concentrations’
pattern has trend, fluctuation, asymmetry, and intermittency.

Daily PM2.5 concentrations
150
|

0 200 400 600 800 1000 1200

Days from 2019-2022

Fig. 3. Time series of the daily PM2.5 concentrations for the training data set.

300

150 200 250
1 |

Daily PM2.5 concentrations
100
]

50
1

0 50 100 150

Days from January,2023- June,2023

Fig. 4. Time series of the daily PM2.5 concentrations for the testing data set.

Table 2: Statistical descriptive daily PM2.5 concentrations.

Training data set Testing data set
Mean 55.51 49.19
Standard deviation 42.47 35.83
Skewness 2.27 4,74
Kurtosis 5.77 29.51
Minimum 7.44 12.00
Maximum 303.98 308.02

The forecasting performances of the COA, RS, BO, CV, and GS models in terms of
evaluation criteria (Tables 3 and 4) for training and testing data sets, respectively. According
to the results of Tables 3 and 4, it can be shown from the forecasting results of daily PM2.5
concentrations that the suggested approach, COA, may significantly improve forecasting
accuracy and generalization capacity because it has lower MAE, RMSE, greater DA, and
greater R? values. COA performs better than the RS, BO, CV, and GS methods. From Table
(3), compared to RS, BO, CV, and GS, the reduction in terms of MAE and RMSE of COA is
87.26%, 85.53%, 86.01%, 86.55% and 87.22%, 86.75%, 86.99%, and 87.16% respectively.

Similarly, for the testing data set (Table 4) compared to RS, BO, CV, and GS, the
corresponding criteria, in terms of MAE, decreased by 87.61%, 86.67%, 86.91%, and 87.21%
respectively. While in terms of RMSE, it decreased by 83.61%, 83.05%, 83.34% and 83.54%
respectively.
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Meta-heuristic algorithms perform well in predicting, even in the absence of data
processing, except for the traditional techniques; RS, BO, CV, and GS performance could be
caused by the arbitrary hyperparameter settings. Moreover, in the comparison between CV, RS,
and GS in estimating the best hyperparameters of RF, the results of the evaluation indicators
based on the training set show that the CV method is superior to the RS and GS methods. In
addition, the application of the RS method revealed that RS obtained non-satisfactory results.

Table 3: Forecasting results of the COA and the benchmark approaches RS, BO, CV, and GS for the

training set.
COA RS BO cV GS
MAE 0.124 0.974 0.857 0.886 0.922
RMSE 1.308 10.237 9.877 10.057 10.189
DA 0.984 0.651 0.694 0.681 0.663
R? 0.988 0.614 0.711 0.704 0.625
Table 4: Forecasting results of the COA and the benchmark approaches RS, BO, CV and GS for the
testing set.
COA RS BO cVv GS
MAE 0.205 1.655 1.538 1.567 1.603
RMSE 1.789 10.918 10.558 10.738 10.87
DA 0.964 0.635 0.678 0.665 0.647
R? 0.972 0.598 0.695 0.688 0.609
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Fig. 5. Forecasting results in the training data set based on methods used.
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From time-series plots of forecasting, the model accuracy of RF based on the COA
algorithm is stable and superior to others for both the training and testing datasets. As
demonstrated in Figures 5 and 6, the COA model's predicted daily PM2.5 levels are essentially
in line with the actual values, demonstrating the high quality of the model's forecast. In addition,
training and testing PM2.5 concentrations greatly increase the prediction capacity of COA. This
is combined with the rather smooth time series of the COA. As a result, the COA model predicts
daily PM2.5 concentrations with remarkable accuracy. Moreover, as shown in Figures 5 and 6,
the PM2.5 concentrations forecast depending on CV are slightly closer to the actual value in
comparison to the BO method. On the other hand, the PM2.5 concentrations forecast of RS
method performs poorly in their forecasts over time.
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Fig. 6. Forecasting results in the testing data set based on the methods used.
Conclusion

The novelty of this approach is, in fact, the accurate estimation of PM2.5 concentrations.
This study combines the RF model with a meta-heuristic optimization algorithm to estimate
daily variations in PM2.5 concentrations within Baghdad, Irag. This further enhances the
exploration and exploitation capabilities of the COA to carry out hyperparameter optimization
within RF. The results indicate that the COA-based methodology is superior compared to other
RS, BO, CV, and GS methods, improving the predictive accuracy of the RF model significantly.
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In particular, COA shows a better performance for all the metrics used to evaluate its
performance, including MAE, RMSE, DA, and coefficient of determination (R?). In the future,
hybrid models and other meta-heuristic optimization algorithms may be developed to study the
increased accuracy of PM2.5 forecasting to devise highly useful environmental policies.

The accurate prediction of PM2.5 concentration has a very critical role in the protection
of public health and the management of the environment. This enhanced COA, as employed in
this study for improving the prediction accuracy of daily PM2.5 levels, provides a potent tool
for policymakers and health officials. With increased reliability in the forecasts, the authorities
can initiate timely warnings and measures to decrease exposure, such as traffic restrictions,
control over emissions by industries, and public advisories.
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