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Forecasting air quality in urban areas is complex due to difficulties in 

accurately defining emission flux density and the meteorological fields. 

Combustion gases from human and social activities are the most significant 

sources of PM 2.5, which is a major air pollutant. Accurate and reliable 

prediction of PM 2.5 levels is crucial for assessing health risks. Forecasting 

PM2.5 daily concentration, in general, has been predicted by Random 

Forest (RF) as a machine learning algorithm. However, the RF 

performance is highly sensitive to the choice of its hyperparameters, which 

usually necessitates careful tuning. Consequently, searching for the optimal 

set of RF hyperparameters constitutes an essential step when attempting to 

improve model efficiency. Various techniques have come into view for 

effective hyperparameter tuning of RF. Meta-heuristic optimization 

methods, with their strong local search abilities, can prevent the training 

network from getting trapped in local optima and increase the likelihood of 

identifying the global optimum. This paper proposes employing the Coati 

Optimization Algorithm (COA), a meta-heuristic approach, to improve RF 

hyperparameter determination, and, consequently, forecasting PM 2.5 

concentrations. Daily PM 2.5 concentrations in Baghdad, Iraq, from 2019 

to 2023 are gathered to train RF models and assess the proposed COA 

performance. The effectiveness of COA is estimated using several metrics. 

Overall, our proposed COA approach demonstrates superior performance 

in terms of evaluation criteria compared to other methods in both training 

and testing daily PM 2.5 concentrations. 
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العراق بناءً على خوارزمية الغابات العشوائية ، في بغداد PM2.5التنبؤ بالتركيز اليومي لـ 
 المحسنة

   3، رائد محمود فيصل   2ل  ا ، زكريا يحيى الجم* 1شهاب   محمود زكريا نافع
 قسم النظم والمعلومات البيئية، مركز بحوث البيئة، جامعة الموصل، الموصل، نينوى، العراق. 1
 قسم الإحصاء وعلوم المعلومات، كلية علوم الحاسوب والرياضيات، جامعة الموصل، الموصل، نينوى، العراق.  2
 نينوى، العراق. ة، جامعة الموصل، الموصل، يعلوم البيئالالبيئة، كلية  ناتا ققسم ت 3
 

 معلومات الارشفة  الملخص

يعد التنبؤ بجودة الهواء في المناطق الحضرية أمرًا معقدًا بسبب الصعوبات في تحديد كثافة 
تدفق الانبعاثات بدقة وتأثير مجالات الأرصاد الجوية. وتُعد غازات الاحتراق الناتجة عن 

، وهي ملوث رئيس للهواء.  PM 2.5الأنشطة البشرية والاجتماعية أهم مصادر انبعاثات  
أمرًا بالغ الأهمية لتقييم المخاطر الصحية.   PM 2.5يعد التنبؤ الدقيق والموثوق بمستويات  

لـ   اليومي  بالتركيز  التنبؤ  تم  )  PM2.5وقد  العشوائية  الغابة  بواسطة  عام  (  RFبشكل 
كخوارزمية للتعلم الآلي. ومع ذلك، فإن أداء الترددات اللاسلكية حساس للغاية لاختيار 

التي تت المجموعة المعلمات المفرطة  طلب عادةً ضبطًا دقيقًا. وبالتالي، فإن البحث عن 
المثلى من المعلمات التشعبية للترددات اللاسلكية يشكل خطوة أساسية عند محاولة تحسين 
للترددات   الفعالة  الفائقة  المعلمات  لضبط  مختلفة  تقنيات  ظهرت  وقد  النموذج.  كفاءة 

ق التحسين الفوقية المجتهدة، بقدراتها القوية في البحث المحلي، أن  ائاللاسلكية. يمكن لطر 
تمنع شبكة التدريب من الوقوع في فخ التفاوتات المحلية وتزيد من احتمالية تحديد المستوى 

البحثية استخدام خوارزمية كواتي للتحسين ) تقترح هذه الورقة  (، COAالأمثل العالمي. 
طة للترددات اللاسلكية، وبالتالي  ، لتحسين تحديد المعلمات المفر متغاير -مجتهدوهو نهج 

في بغداد بالعراق من    PM 2.5. تم جمع التركيزات اليومية لـ  PM 2.5التنبؤ بتركيزات  
المقترح.    COAلتدريب نماذج الترددات اللاسلكية وتقييم أداء    2023إلى عام    2019عام  

باستخدام عدة مقاييس. بشكل عام، يُظهر نهجنا المقترح لتقييم أداء   COAتم تقدير فعالية  
النماذج المقترحة أداءً متفوقًا من حيث معايير التقييم مقارنة بالطرق الأخرى في كل من 

 اليومية.  2.5التدريب واختبار تركيزات جسيمات 

 

 2024 -نوفمبر -15 تاريخ الاستلام:
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Introduction 

Air pollution gives rise to environmental issues such as global warming, depletion of the 

ozone layer, and the occurrence of acid rain. Air quality degradation, particularly in urban 

regions, arises from swift industrialization, infrastructure expansion, and urban development. 

While these advancements aim to accommodate the rapid population growth in these areas, 

they concurrently generate detrimental effects on human health and the environment equally 

(Jamil and Shehab, 2021; Wood, 2022).  

In this regard, high population density is normally linked to high air quality degradation 

resulting from increased energy consumption, which can be attributed to both residential and 

industrial activities. Some major sources of this problem are the use of fossil fuels for power 

generation and heating purposes, which leads to the release of greenhouse gases (such as ozone, 

methane, carbon dioxide, nitrogen oxides), sulphur oxides, and particulate matter into the 

atmosphere (Wang et al., 2019). Moreover, increasing numbers of vehicles across cities, which 

has become the cause of congestion, worsened air quality and have strong effects on locals 
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(Mohd Shafie et al., 2022). Exposure to outdoor air pollution, largely due to PM2.5, has led to 

an estimated 3.3 million premature deaths annually across the globe, with a possible doubling 

of that number by 2050 (Lelieveld et al., 2015).  

PM 2.5 is among the major environmental air contaminants, characterized by small size, 

high toxicity, easy diffusivity, and long suspension time in the air (Xu et al., 2022), which 

seriously threatens the environment, human health, and socio-economic contexts. PM2.5 not 

only carries harmful compounds but also travels extensively across distances, carrying an 

appreciable effect on air quality and visibility (Tsurumi and Managi, 2020). Exposure to PM2.5 

raises the risk of cancer, respiratory, and cardiovascular diseases, which are major threats to 

human health.  

Precise and efficient prediction of future PM2.5 levels holds considerable importance in 

environmental management (Wang et al., 2024). Human activities associated with fossil fuel 

consumption in transportation, power generation, heating/cooling, and various industrial 

processes are primary sources of anthropogenic PM2.5. Additionally, events like crop-residue 

burning, human-induced forest fires, and deforestation-related dust storms intermittently 

contribute significantly to PM2.5 levels in specific regions (Tian et al., 2021; Wood, 2022). The 

complexity of atmospheric conditions, including temperature inversion layers and thermal 

updrafts, significantly influences the accumulation or dispersion of air pollutants. However, 

these intricacies often elude customary meteorological measurements (Murthy et al., 2020). 

PM2.5 concentration forecasting models have gained increasing interest and have been 

continuously updated and redeveloped in recent years. For environmental protection 

supervision, it is critically required that PM2.5 concentrations are continuously monitored in 

real time, which requires reliable methods for forecasting to determine whether air quality 

standards are met (Wu et al., 2022). The accurate forecast of spatiotemporal variations of air 

pollution requires intricate algorithms in addressing the complexities of tracking this type of 

pollution (Muthukumar et al., 2022). Researchers cited the need for strong estimation models 

that would analyse levels of air pollution to give meaningful insights and aid in informed policy 

formulation (Southerland et al., 2022). Therefore, it is very critical to adopt new data-driven 

methodologies so as to achieve high accuracy in air quality predictions.  

Of late, deep learning as well as machine learning have been placed among the most 

important tools in earth and environmental sciences (Faisal and Shehab, 2025; Shehab and 

Faisal, 2025; Zhong et al., 2021). They were applied to many complex tasks, like urban flood 

prediction (Kao et al., 2021), estimation of water quality (Algamal et al., 2025; Jamil and 

Shehab, 2021; Najah Ahmed et al., 2019; Shehab et al., 2024), and regional air pollution 

forecasting (Wong et al., 2021). These technologies have greatly improved the ability to 

forecast PM 2.5 levels and issue warnings on air pollution. Some algorithms of machine 

learning, namely SVM as well as RF, have already shown a huge potential in PM 2.5 forecasting 

because of their excellent ability to learn complex variable patterns and relationships. That 

capacity easily permits the perfect capturing of nonlinear dynamics within the PM 2.5 

concentration series and, therefore, better accuracy in its forecasting (Wang et al., 2024). Such 

models can clearly be a great alternative to the traditional atmospheric models, which are 

inventory-based because they use statistics and are not limited by the presence of extensive 

inventories (Feng et al., 2020). An ensemble learning method, the RF algorithm is employed in 

this research due to its great flexibility in PM 2.5 forecasting. On that note, its strength in 

adaptability to handle complex relationships within data averts overfitting, a common problem 

in most machine learning models. 

This research thus aims to go beyond the limitations associated with short-term and coarse 

temporal resolution in prediction and provide a method that will enable the building of a robust 

model for the prediction of daily variations reliably and accurately. This paper focuses on the 

development and extension of precise models for the forecasting and prediction of PM 2.5 
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concentrations using an RF model based on environmental and meteorological variables. For 

this purpose, daily data are used from a ground-level sensor at Baghdad U.S. Embassy, located 

in one of the most highly congested areas within Baghdad, Iraq. This dataset will form the basis 

for training, testing, and validation of the model proposed herein. This dataset contains daily 

measurements of PM 2.5 for four years. 

Data and methods 

Study area 

The daily PM2.5 average concentration dataset was compiled from the Baghdad U.S. 

Embassy air quality monitoring station from 1st March 2019 to 1st June 2023. Undoubtedly, 

the data obtained from the singular monitoring post are solely indicative of the immediate 

conditions of the city centre, providing a comprehensive urban outlook but struggling to identify 

specific pollution hotspots within the city. Baghdad stands as the largest urban centre in Iraq 

(Fig. 1), accounting for about 22% of the national population, and therefore encounters 

substantial air pollution threats stemming from different sources such as vehicle emissions, 

industrial activities, power generation, open burning, and waste disposal. This has led to an 

upward trend in average yearly PM 2.5 concentration spanning over the previous ten years. 

Baghdad was ranked among the most polluted cities, depending on PM2.5 concentrations 

globally in 2022.  

 

Fig. 1. Map of Baghdad highlighting metropolitan areas and municipalities. 

Random Forest algorithm  

RF has developed into a robust as well as versatile tool in the machine learning landscape, 

demonstrating remarkable performance in diverse applications and employed in regression and 

classification tasks equally (Hasnain et al., 2023). This technique gains from the power of 

ensemble learning by creating an ensemble of decision trees, each of them trained on a 

dissimilar random subset of training data. This will then merge the predictions of multiple 

decision trees, reducing overfitting, generally providing an increase in accuracy and a boost in 

the robustness of the model. The algorithm creates multiple bootstrap samples around the 

training data by randomly drawing subsets of it with replacement. A decision tree is built for 

each bootstrap sample. Inherent in the tree induction process: at each split, instead of 
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considering all features, the algorithm randomly selects a subset of features to consider at each 

node. This randomness in features goes a step further in reducing overfitting and increasing the 

variety of the forest. In prediction, each tree in the forest casts a vote (Josso et al., 2023). For 

classification, it chooses the most common class among the trees as a prediction. It uses the 

average of all trees' predictions for regression. RF is found to be at par with other state-of-the-

art performance measures across a wide array of tasks all the time. Its ensemble nature reduces 

overfitting and improves generalizability, hence more reliable predictions. Besides, it is 

resistant to noise and outliers in data, retaining its accuracy even on challenging datasets (Yang 

et al., 2020). The RF also gives the significance of distinct features so that one can see the logic 

of the model's decision process. Then, the power of RF is that, with its adaptability and 

flexibility, it can be employed for both regression and classification tasks, which very much 

extends the domains of problems it is useful for. 

The proposed improvement 

Hyperparameters are those parameters that require defining before implementing an 

algorithm or before running an algorithm (Khalid and Javaid, 2020). In the case of Data Science, 

tuning of hyperparameters is one of the significant stages in the workflow. Done correctly, 

hyperparameter tuning can indeed take a worthless model and turn it into a model ready for 

production to make real decisions (Probst et al., 2019; Singh et al., 2021).  

The identification of the appropriate hyperparameters plays a crucial part in the RF 

prediction accuracy and learning time (Daviran et al., 2021). However, the decision-making of 

the right combination of hyperparameters is very critical and consumes a lot of time (Zhu et al., 

2022).  

Tuning hyperparameters manually consumes a lot of time, and at the same time, a manual 

process needs a deeper understanding of the RF algorithm as well as its hyperparameters. As 

for the issues regarding the manual specification of hyperparameters, it is necessary to use 

hyperparameter optimization to search for the best configuration automatically (Ge et al., 2023). 

The methods to apply to find the values of the hyperparameters include randomized search 

(RS), Bayesian optimization (BO), cross-validation (CV), and grid search (GS). This process 

was previously conducted for all the possible combinations of hyperparameters, and the set of 

hyperparameters that yielded the best results in the chosen criterion was returned. However, 

these approaches are computationally expensive, and they do not exhaust all the possible 

combinations of hyperparameters (Abdulsaed et al., 2023).  

Hence, there is a need for better and more effective methods for hyperparameter tuning 

for RF. Over the last few years, metaheuristic optimization algorithms have been extensively 

applied for solving the problem of hyperparameter tuning (Abdulsaed et al., 2023; Algamal et 

al., 2021). Recently, various new nature-inspired algorithms were proposed by researchers to 

extend and upgrade the exploration and exploitation of the existing algorithms. The Coati 

Optimization Algorithm (COA) has emerged as one of the most popular because of its high 

efficiency (Dehghani et al., 2023; Jia et al., 2023). 

COA is a population-based metaheuristic approach, where each coati represents an 

individual within the population. The location of each coati within the search space affects the 

decision variables' values. Therefore, in COA, coatis serve as potential solutions to the problem 

at hand. Initially, the coatis are randomly placed within the search space as defined thereafter 

(Dehghani et al., 2023): 

 
,: *( ), 1,2,....., ; 1,2,......,i i j j j jX X Lb r Ub Lb i N j m= + − = =  (1) 

One interesting behavior in this exploration phase is that one group of coatis climbs the 

tree to scare the iguana down to ground level, where others are waiting to capture it. This 

behavior shows the ability of the algorithm to explore or examine certain aspects in a particular 

context. The algorithm mimics the behavior based on the notion that half the population climbs 
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the trees to force the iguana down, and the remaining half wait at ground level to catch the 

iguana as it falls, and it looks like the following Eq. (2).  

  
, , ,

: *( * ), 1,2,....., / 2 ; 1,2......,
i j i j i j

new new

i jX X X r I X i N j m= + − = =  (2) 

Once the iguana drops to the ground, it is assigned a random position (
GI ) within the 

search space, and the coatis under the tree adjust their position according to Eqs. (3) and (4). If 

the objective function value at the new position calculated for each coati is an improvement 

over the current value, the new position is accepted. Conversely, if the new position yields a 

worse objective function value, the coati remains in its original position (Eq. 5) (Dehghani et 

al., 2023). 

 : *( ), 1,2,.........,G G

j j j jI I Lb r Ub Lb j m= + − =  (3) 

 
, ,

,

, ,

*( * ), ( ) ( )
:

*( ),

i j i j

i j

i j i j

G G

j i
new new

i G

j

X r I x F I F X
X X

X r X I else

 + − 
= 

+ −

 (4) 

with 1, 2,....., , 1,2,.....,
2 2

N N
i N j m

   
= + + =   
   

   

 
, ( ) ( )

,

new new

i i i

i

i

X F X F X
X

X else

 
= 


 (5) 

where: iX is the current position of the ith coati, 
i

newX is the newly calculated position 

for the ith coati, GI is the randomly generated position of the iguana, F  is the objective function 

value. 

In the next phase, the exploitation phase, the behavior of coatis employing a predator-
escape strategy is described. This strategy keeps the coati close to its current position and in a 

safe stance, enhancing the algorithm's exploitation capability. To accomplish this, a random 

position is created near each coati using Eqs. (6) and (7). If this newly generated position results 

in an improved objective function value, the coati assumes the new position; otherwise, it 

retains its original position (Eq. 5). 

 , , 1, 2,......,
j jlocal local

j j

Lb Ub
Lb Ub t T

t t
= = =  (6) 

 , ,: (1 2* )*( *( )), 1,2,..., , 1,2,..,new new local local local

i i j i j j j jX X X r Lb r Ub Lb i N j m= + − + − = = (7) 

To optimize the hyperparameters of RF using COA as an improvement proposition, the 

position vector 𝑋 of each coati is defined as a vector with dimension 𝐷, representing the coati's 

position in the COA. Consequently, each vector 𝑋 corresponds to a specific configuration of 

the RF, with each dimension of 𝑋 representing a distinct hyperparameter of the RF. Therefore, 

we have five positions that each coati in the swarm will search for them. Consequently, our 

proposed improvement is as follows: 

Step 1: The number of coatis, coatiN , is set to 30, and the maximum number of iterations 

is  =500T .  

Step 2: The positions of each coati are randomly specified. For the number of trees in the 

forest (Ntrees), the position is randomly generated from a uniform distribution between 10 and 

100. While for the minimum number of samples at leaf node (MNleaf) and for the minimum 
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number of samples considered to split an internal node (MNinternal), the position for each one is 

randomly generated from a uniform distribution within the range [1,25] and range [2,20], 

respectively. Further, the position of the maximum depth of the tree (Mtree) is randomly 

generated from a uniform distribution between 1 and 200. Finally, the number of features 

(Nfeatures) taken for the best split is considered depending on the number of lags of the series. A 

representation of the coati position (Fig. 2). 

Step 3: The fitness function is defined as  

 trees leaf internal tree features

2

(N ,MN ,MN ,M ,N )

1

1
ˆfitness min ( ) .

n

i i

i

y y
n =

 
= − 

 
   (8) 

Step 4: The positions of the coati are updated using Eq. (4) and Eq. (7), respectively. 

Step 5: Steps 3 and 4 are repeated until a T  is reached. 

Fig. 2. Position of each coati in the COA algorithm. 

Forecasting evaluation criteria 

Four assessment measures, RMSE, MAE, direction accuracy (DA), and R2 are adopted 

in this research to estimate the effectiveness of the projected forecasting method. Their simple 

mathematical expressions (Table 1). 

Table 1: Forecasting evaluation criteria. 

Evaluation criterion Mathematical formula 

MAE 

1

1
ˆ

n

t t

t

y y
n =

−  

RMSE ( )
2

1

1
ˆ

n

t t

t

y y
n =

−  

DA 
1 1

1

ˆ ˆ1, if ( )( ) 01
,

0, otherwise

n
t t t t

t t

t

y y y y
z z

n

+ +

=

− − 
= 


  

R2 ( ) ( )
2 2

1 1

ˆ ˆ1
n n

t t t t

t t

y y y y
= =

 
− − − 
 
   

Results analysis 

Our goal in using our proposed approach, COA, is to demonstrate that an adequate choice 

of hyperparameters can produce better PM2.5 daily concentration forecasting. Comprehensive 

comparison tests using RS, BO, CV, and GS are used to examine the forecasting performance 

of our proposed algorithm, COA.  

The data are divided into two sets: the training data set, including 1270 PM2.5 daily 

concentrations (from 1 March 2019 to 31 December 2022), and the testing data set, including 

151 PM2.5 daily concentrations (from 1 January 2023 to 1 June 2023). Figures (3 and 4) depict 

the daily PM2.5 concentrations’ pattern over time for the training and testing data sets. Both 

figures proved that the daily PM2.5 concentration pattern is nonlinear and non-stationary over 
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time. The descriptive statistics for both training and testing data sets (Table 2) were used to 

investigate the behavior of daily PM2.5 concentrations. The daily PM2.5 concentrations’ 

pattern has trend, fluctuation, asymmetry, and intermittency.  

 

Fig. 3. Time series of the daily PM2.5 concentrations for the training data set. 

 

Fig. 4. Time series of the daily PM2.5 concentrations for the testing data set. 

Table 2: Statistical descriptive daily PM2.5 concentrations. 

 Training data set Testing data set 

Mean 55.51 49.19 

Standard deviation 42.47 35.83 

Skewness 2.27 4.74 

Kurtosis 5.77 29.51 

Minimum 7.44 12.00 

Maximum 303.98 308.02 

The forecasting performances of the COA, RS, BO, CV, and GS models in terms of 

evaluation criteria (Tables 3 and 4) for training and testing data sets, respectively. According 

to the results of Tables 3 and 4, it can be shown from the forecasting results of daily PM2.5 

concentrations that the suggested approach, COA, may significantly improve forecasting 

accuracy and generalization capacity because it has lower MAE, RMSE, greater DA, and 

greater R2 values. COA performs better than the RS, BO, CV, and GS methods. From Table 

(3), compared to RS, BO, CV, and GS, the reduction in terms of MAE and RMSE of COA is 

87.26%, 85.53%, 86.01%, 86.55% and 87.22%, 86.75%, 86.99%, and 87.16% respectively.  

Similarly, for the testing data set (Table 4) compared to RS, BO, CV, and GS, the 

corresponding criteria, in terms of MAE, decreased by 87.61%, 86.67%, 86.91%, and 87.21% 

respectively. While in terms of RMSE, it decreased by 83.61%, 83.05%, 83.34% and 83.54% 

respectively.  
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Meta-heuristic algorithms perform well in predicting, even in the absence of data 

processing, except for the traditional techniques; RS, BO, CV, and GS performance could be 

caused by the arbitrary hyperparameter settings. Moreover, in the comparison between CV, RS, 

and GS in estimating the best hyperparameters of RF, the results of the evaluation indicators 

based on the training set show that the CV method is superior to the RS and GS methods. In 

addition, the application of the RS method revealed that RS obtained non-satisfactory results. 

Table 3: Forecasting results of the COA and the benchmark approaches RS, BO, CV, and GS for the 

training set. 

 COA RS BO CV GS 

MAE 0.124 0.974 0.857 0.886 0.922 

RMSE 1.308 10.237 9.877 10.057 10.189 

DA 0.984 0.651 0.694 0.681 0.663 

R2 0.988 0.614 0.711 0.704 0.625 

Table 4: Forecasting results of the COA and the benchmark approaches RS, BO, CV and GS for the 

testing set. 

 COA RS BO CV GS 

MAE 0.205 1.655 1.538 1.567 1.603 

RMSE 1.789 10.918 10.558 10.738 10.87 

DA 0.964 0.635 0.678 0.665 0.647 

R2 0.972 0.598 0.695 0.688 0.609 

 

Fig. 5. Forecasting results in the training data set based on methods used. 
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From time-series plots of forecasting, the model accuracy of RF based on the COA 

algorithm is stable and superior to others for both the training and testing datasets. As 

demonstrated in Figures 5 and 6, the COA model's predicted daily PM2.5 levels are essentially 

in line with the actual values, demonstrating the high quality of the model's forecast. In addition, 

training and testing PM2.5 concentrations greatly increase the prediction capacity of COA. This 

is combined with the rather smooth time series of the COA. As a result, the COA model predicts 

daily PM2.5 concentrations with remarkable accuracy. Moreover, as shown in Figures 5 and 6, 

the PM2.5 concentrations forecast depending on CV are slightly closer to the actual value in 

comparison to the BO method. On the other hand, the PM2.5 concentrations forecast of RS 

method performs poorly in their forecasts over time. 

 

Fig. 6. Forecasting results in the testing data set based on the methods used. 

Conclusion 

The novelty of this approach is, in fact, the accurate estimation of PM2.5 concentrations. 

This study combines the RF model with a meta-heuristic optimization algorithm to estimate 

daily variations in PM2.5 concentrations within Baghdad, Iraq. This further enhances the 

exploration and exploitation capabilities of the COA to carry out hyperparameter optimization 

within RF. The results indicate that the COA-based methodology is superior compared to other 

RS, BO, CV, and GS methods, improving the predictive accuracy of the RF model significantly. 
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In particular, COA shows a better performance for all the metrics used to evaluate its 

performance, including MAE, RMSE, DA, and coefficient of determination (R²). In the future, 

hybrid models and other meta-heuristic optimization algorithms may be developed to study the 

increased accuracy of PM2.5 forecasting to devise highly useful environmental policies. 

The accurate prediction of PM2.5 concentration has a very critical role in the protection 

of public health and the management of the environment. This enhanced COA, as employed in 

this study for improving the prediction accuracy of daily PM2.5 levels, provides a potent tool 

for policymakers and health officials. With increased reliability in the forecasts, the authorities 

can initiate timely warnings and measures to decrease exposure, such as traffic restrictions, 

control over emissions by industries, and public advisories. 
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