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Bangladesh has a significantly low and steadily declining land
covered in forest compared to the required one-third. Therefore, it is
essential to explore the condition of the forest cover in Bangladesh.
In recent years, remote sensing techniques have become increasingly
popular for assessing the health of forests. The research evaluates the
forest health seasonality and spatiotemporal variability. Landsat 7
ETM+, Landsat 8 OLI, and Sentinel-2 images for 2002-2021 and
seven vegetation indices are used in the Google Earth Engine
platform as it is widely accepted and convenient. The results reveal
the time series analysis of vegetation indices; they show a maximum
value of 0.8107 for SAVI in Sundarban and a minimum value of
0.0146 for NDVI in the Dinajpur and Hill Tract areas. Also, spatial
variability illustrated a maximum value of 0.8107 for SAVI in
Sundarban and a minimum value of 0.0146 for NDV1 in the Dinajpur
area. Moreover, Seasonal patterns are also identified where forest
health is best observed during the monsoon season (July - October).
Furthermore, the assessment indicates that the south and southeastern
portions of the research region, Sundarban, and the Hill Tract area
have healthier forest cover than the others. This study could be
considered a comprehensive reference for managing and planning
forests.
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Introduction

The creation of forest conditions that directly meet human needs and the resilience,
recurrence, persistence, and biophysical processes that result in sustainable ecological
conditions have been used to describe forest health. The spatial size also affects how we define
and comprehend forest health. Forests cover roughly 30 percent of Earth's land area and play
an important role in atmospheric regulation of carbon dioxide (CO2) and oxygen (O.) soil
conservation providing habitat for many species, and providing a source of many useful
products like wood and food (Xie et al., 2008; Chaturvedi et al., 2011; Rudel et al., 2005; Vega
et al., 2012). On the surface of the earth, the forest essentially encompasses any natural
resources, such as wood or solar energy, that can be naturally renewed through time and can be
a healthy ecosystem (Sahana et al., 2015). The influence of anthropogenic and physical forces
on the regions that encompass the majority of these surfaces has steadily increased in the
preserved habitats over the last few decades. The primary driver of anthropogenic habitat
fragmentation, however, is a rising population that requires more land for residence, agriculture,
urban habitat expansion, the construction of more roads and railroads, and industrial activities
(Carroll et al.,, 2004). In forested ecosystems, the hydrological cycle or surface force
equilibrium actively contributes to the regulation of the biosphere (Rogan et al., 2002). Most
forests are fragmented in wealthy countries, while on the other side of this fragmentation trend,
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the area covered by forests is growing at an alarming rate in other emerging nations (Talukdar
etal., 2019). Forest health primarily defines the origin of forest conditions that depend on nature
and humans (Kayet et al., 2019). The monitoring of forest products and assessing changes in
ecological function are crucial assessments of the factors in forest health (King, 2000). The
effects on forest health are mostly caused by the reduction of changes in both temperature and
carbon dioxide. Because temperatures rise in the warmer season, forest persecution increases
in the cooler season. The decline in forest health is caused by invading species in addition to an
increase in temperature (Nandi and Sarkar, 2021). Density and fragmentation models are useful
for assessing the health of a forest in a given area. Several studies have used the Landsat TM
data analysis guide for mapping and analyzing forest canopy density, whose model can help in
assessing forest degradation (Jaiswal et al., 2002). If a forest is in good shape, it could be a
reliable indicator of the local environment (Allen et al., 2010). Both abiotic stresses, notably
drought (Macpherson et al., 2017) and biotic disturbances, such as logging and fires (Lausch et
al., 2017), are rising within the world's forests. The effectiveness and efficiency of a city's
ecosystem are directly linked to the condition of its forests (Xiao and McPherson et al., 2002).

Land use, land cover, and vegetation mapping for both urban and rural forests have made
extensive use of remote sensing data (Erikson, 2004; Xiao et al., 2004; Pouliot et al., 2002;
Ustin and Xiao, 2001). Forward the resolution data from the Advanced Very High-Resolution
Radiometer (AVHRR) (Tucker et al., 1985) and the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Huete et al., 2002) provide comprehensive findings. Researchers
have devoted a great deal of time and resources to studying and creating novel approaches to
silviculture (Moore etal., 2017; Watt et al., 2017), tree breeding programs (Klapste et al., 2017;
Li et al., 2015), nutrition in forests (Maggard et al., 2017), and remote sensing techniques for
better forest management to increase productivity in the world's plantations of trees (Watt et
al., 2015; Watt et al., 2016; Pearse et al., 2017). Spatio-temporal portraits of medium-to-long-
term (years to decades) vegetation dynamics are from space-based remote sensing instruments.
The article explains that common vegetation indices like the Normalized Difference Vegetation
Index (NDVI) can pick up on seasonal fluctuations in the amount of fractional cover and leaf
area index (LAI) across different forest types, which contributes to the emphasis on structure
(Wang et al., 2017). A study demonstrated that deforestation prevention policies and
management strategies benefit from a better understanding of forest spatial patterns and the
processes that shape them (Fuller et al., 2006). The ability to monitor seasonal or annual
variations in tree health and trace the spread of disease is another focus of this study. In addition,
it offers data on tree health that is crucial for analyzing the environmental, social, and economic
benefits that urban forests provide to their communities (Xiao and McPherson, 2005).

National grasslands and forests must be in good condition if we accomplish our mission
of helping people and conserving the environment. The Forest Service strives to maintain,
enhance, and restore healthy forest conditions in the nation's forests and grasslands. According
to the World Bank Country Climate and Development Report in 2022, Bangladesh is one of the
most susceptible countries to climate change, which may prove to be crucial in maintaining
healthy forests in the future. A healthy forest protects coastal communities from bad weather
and sea level rise, in addition to absorbing greenhouse gases and managing water flows. They
provide access to healthy habitats for migratory plant and animal species, too. The significance
of vegetation in preserving the ecological biota and environmental balance must be understood.
As a result, to evaluate vegetation status, it is necessary to consider ecological dynamism,
enough soil nutrients, plant health, as well as effective coping mechanisms and management
measures that can assist in reducing risks and sustaining forest health (Allen et al., 2010).
Consequently, healthy forests can perform their functions more effectively than unhealthy ones.
It is crucial to safeguard and maintain forests to provide integrated and sustainable drainage and
sustainable management of agroforestry features.
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An important facet of environmental policy and resource allocation is the assessment and
evaluation of forest health. The root reasons for the detrimental effects on the health and vitality
of forests differ from location to location, and it is difficult to gauge their scope and longevity.
It is challenging to understand how these components interact with one another, as well as how
they affect the health and vitality of forests. Wide-ranging indirect effects could have social,
economic, and environmental implications. The main issues facing Bangladesh's forest
resources are the fast-growing population's exponentially expanding consumption and
dependence on forest products and services, as well as the weak enforcement of forest laws.
Expansion of industrialization, tobacco cultivation, and land grabbing for the real estate
industry, i.e., housing, and other new industrial expansions include different chemical and
garment industries (Sal Forest), ship breaking and shrimp cultivation (Planted Mangrove), and
so on. An increase in encroachment and illegal deforestation in forests is another reason for the
diminution of the forest area. Following that, this exploration aims to evaluate the forest health
along with seasonality and spatio-temporal variability to achieve: a) assessing the forest health
from 2002 through 2021, b) identifying the spatio-temporal variability, and c) evaluating the
seasonality of forest health, which are set as objectives.

Study Area

The present study has been done in Bangladesh, which is a South Asian country located
between latitudes 20”34’ and 26"38' North and longitudes 88"”01" and 92"41' East. It is situated
on the Bay of Bengal, east of India, and is surrounded by the Indian states of Tripura and
Mizoram to the east, West Bengal to the west and north, Assam to the north, Meghalaya to the
north and northeast, and West Bengal to the west and northwest. Its border with Myanmar
(Burma) is shared to the southeast (Chowdhury, 2014). As our research area, we have selected
five areas from the different regions of Bangladesh. These sample sites are: Sundarbans in the
southern region and coastal area, Hill tracts in the southeastern region, Lawchara in the
northeastern region, Madhupur in the central-northern region, and Dinajpur area in the
northwestern region (Fig. 1) (Rahman, 2012).
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Fig. 1. The study area of Bangladesh with five sample locations of forest cover.
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Materials and methods

Data type and sources

To analyze mapping and track deforestation, intra-annual availability of cloud-free land
satellite data is required. The Landsat missions are equipped with a multispectral passive optical
sensor that measures radiation from the Earth's surface on several arbitrarily broad
electromagnetic channels known as spectral bands. The Copernicus Sentinel-2 mission
comprises two identical satellites orbiting in the same orbit. Each satellite of Sentinel-2 is
equipped with a cutting-edge wide-swath high-resolution multispectral imager with 13 spectral
bands to provide a new viewpoint on our land and vegetation. TM, OLI, Sentinel and Blue, red,
NIR, SWIR1, and SWIR?2 are all similar across all frequently used spectral strips. Vegetation-
sensitive bands (Table 1).

Table 1: Vegetation sensitive bands that are used in the analysis.

Landsat 7 Landsat 8 Sentinel-2
Band 1 - Blue Band 2 - Blue Band 4 — Red
Band 2 - Green Band 3 - Green Band 8 - NIR
Band 3 - Red Band 4 - Red
Band 4 - Near-Infrared Band 5 - Near Infrared (NIR)
Band 5 - Short-wave Infrared Band 6 - SWIR 1
Band 6 - Thermal Band 7 - SWIR 2
Landsat 7 Band 10 - Thermal Infrared (TIRS) 1

Imaging of Landsat TM (Path-136, 137, 138, Row-43, 44, 45), OLI (Path-136, 137, 138,
Row-43, 44, 45), and Sentinel-2 is used through Google Earth Engine. The number of imagery
accessible each year in the study region, as in the other tropical covers, is restricted; nonetheless,
at least one cloud-free Landsat image is available every season. The images had been
geometrically rectified in Level and atmospherically corrected in the Solar Spectrum using the
radio-transmission approach of the second satellite signal simulation. Their key advantage over
higher-resolution imaging is that they may be used as archive data for an extended period of
time. Images with greater than 10% cloud coverage are avoided and not included in the research
(Mozgeris and Balenovic, 2021; Calders et al., 2020).

Satellite Imegeries
2002 - 2021

Extracted
Data

Formula

‘ Vegetation Indices

Fig. 2. A detailed flowchart of the method.

The key goal of this study is to evaluate how the sample areas of Bangladesh have
changed over time. This section explains the overall methods utilized to collect and process
data in achieving the aim of the study. As previously indicated, the Google Earth Engine (GEE)
hosts satellite imaging data and provides computational services via a simple web-based
interface. The Earth Engine Code Editor is used in this study to access this facility through
interactive JavaScript coding. From 2002 to 2021, GEE satellite imagery from Landsat 7 and
Landsat 8 was used. Then, the data are filtered to remove any digital photos with clouds, fog,
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or haze. The GEE computing module is then provided with the shortlisted and cleaned dataset,
which is responsible for recognizing the forest cover initially. Following that, using pixel
counting, the minimum, maximum, mean, and standard deviation values of vegetation indices
are extracted as datasets. Next, extracted datasets are imported to MS Excel to filter, rearrange,
combine, and make graphical representations. The meaningful visualization of the vegetation
indices data helps to better understand the condition of the vegetation health, pattern, and trends
to discuss causes and consequences. Figure 2 summarizes the entire procedure.

Vegetation indices

To evaluate the forest health of Bangladesh, seven VI were initially analyzed (Table 2),
namely the Normalized Difference Vegetation Index (NDV1), Normalized Difference Moisture
Index (NDMI), Greenness Index (Gl), Soil-Adjusted Vegetation Index (SAVI), Perpendicular
Vegetation Index (PVI), Enhanced Built-Up and Bareness Index (EBBI), and Leaf Area Index
(LAI). These indices are used to produce the health status and vigor of a forested area. The
vegetation indices were measured using reflectance values at various wavelengths to increase
information relevant to vegetation while considering environmental conditions and shadow.

Table 2: Vegetation indices used in this analysis.

Vegetation Index  Equation Reference
NIR-Red (McDaniel, 1

NDVI NIR+Red 982)

NDMI NiR-SWIR (Dutta, 2020)

NIR+SWIR

((0.2728 * Blue) — (0.2174 * Green) — (0.5508 * Red) + (0.7221 * NIR) + (0.0733 * SWIRI) —

G (0.1648 * SWIR2))/100 (Yuan, 1996)
SAVI S« (1.5) (Ren, 2018)
PVI /(0355 NIR—0.149 RED)2—(0.355RED—0.852NIR)? (Rajan,
100 2009)
SWIR—Red (Baranwal,
EBBI 10% V(SWIR+TIR) 2022)
(Bajocco,
* *
LAI 0.57 * exp (2.33 * NDVI) 2022)

Google Earth Engine (GEE)

Google Earth Engine, the platform adopted for this research, is a cloud platform that hosts
a multi-petabyte database of satellite images and geographic information, as well as planetary-
scale analytic capabilities. Utilizing GEE aids in minimizing the pre-processing and data-
obtaining procedures, which would otherwise demand significant computing power and large
data storage capacity (Kong et al., 2019). The technique presented in this paper requires the
collection of spatiotemporal data over a period of 20 years. Multi-petabyte datasets are easily
accessible and are mostly pre-processed on Google Earth Engine. Second, high-performance
computing resources enable users to utilize a machine-learning technique to obtain verified
results. Data extraction for this analysis is based on the collection of Landsat, Sentinel data and
integrated vegetation indices. Selected imagery, vegetation-sensitive bands, and index
equations are arranged into a GEE Image Collection object. We applied "reducers,” a
sophisticated feature in GEE that allows us to compute at the pixel level across a stack of images
or inside a specific region of space. We utilized the EE. Reduce method to compute descriptive
statistics such as minimum, maximum, mean, and standard deviation. Finally, the data are saved
to CSV files and evaluated with the MS Excel program. Although applying the formulas for
vegetation indices for various satellite band combinations during data extraction presented
certain challenges, we made an effort to reduce these. For instance, while evaluating the
greenness index with Landsat 8, we can choose SWIR1, SWIR2, or Landsat 7, which utilize
the SWIR band.

Statistics

Data collection and analysis are phases in the statistical analysis process, which is used
to find patterns and trends. It is a technique for reducing bias from data evaluation by numerical
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analysis (Candiago et al., 2015). In this work, we have generated statistics for the indices for
assessing forest health in the study region. We have presented comparison graphs of vegetation
indices using the extracted data as well, which help us in understanding how they change over
time. The difference in scale ratio, however, prevented us from including LAI in this
comparison. As we know, vegetation indices such as NDVI, NDMI, GI, PVI, SAVI, and EBBI
vary from -1 to +1, while LAI goes from 1 to 4.5. To evaluate seasonality, a quarter graph is
produced. We have also conducted trend analysis by linear regression to understand spatial
variability and time series analysis, which reveals changes in forest cover over time in various
places.

Seasonality

The temporal profiles of the vegetation indicators for the five sites under investigation
are displayed in Fig. 3. The average VI values are plotted month by month. The seasonal VI
fluctuation between dry and rainy seasons, as well as the appearance of green vegetation, is
measured between January and December. The resemblance can be observed in the NDVI,
NDMI, and GI indices. The Normalized Vegetation Index (NDVI) measures the amount and
how notably the vegetation on the surface has grown. While the Greenness Index (GI) provides
information on the quality of the greenery since the green area is covered with grasses, trees,
and different plants, the Normalized Moisture Index (NDMI) reveals the moisture level in the
vegetation (Brando et al., 2010). If we look at the lines of NDVI, NDMI, and GI, we can see
that their values rise and show the maximum value from August to November, gradually
decrease and show a mid-range from December to February, and afterwards display the lowest
value from March to July. In contrast, PVI and SAVI show a similarity, where PVI is used to
represent the level of soil brightness, and SAVI is used to correct NDVI for the effects of soil
brightness where vegetation cover is low. As shown by the X and Y lines, the values are lowest
from September to January, grow to a mid-range from February to May, and are highest from
June to August. Particularly with respect, EBBI has a line that counts both built-up and bare
space. Since there is little variation in this line, seasonality is not given considerable weight.

Dinajpur Area Hill Tract Area Range Lawachara Area

Range Range

lllllll Madhupur Area . Sundarban Area
PVI
——— NDMI
NDVI

e —— SAVI

oo —— EBBI

Month i D Month

Fig. 3. Comparison of the monthly mean of different vegetation indices.
Spatio-temporal variability

The variability change patterns are defined by spatial and temporal fluctuations. The
spatial parameters are the locations and frequency of change, whereas the temporal parameters
are the time of occurrence and length of each change event (Quiring and Ganesh, 2010).
According to Fig. 4, the yearly average NDVI varies between 0 and 0.5 in different locations.
In the Lawachara region, the NDVI of the vegetation-covered area demonstrates significant
variations between 2002 and 2021. The NDVI of the Madhupur vegetation-covered areas has
been considerably increasing since 2017, with other regions exhibiting a minimal decline. The
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vegetation-covered regions' annual average NDMI varies from 0.1 to 0.4. In the Sundarban
region, the NDMI of the vegetation-covered area shows greater changes between 2002 and
2014. The Gl lines appear to vary from -0.1 to 0.4, while the EBBI lines appear to range from
-0.2to 0. The GI and EBBI of the Dinajpur and Hill Tract region remain relatively stable over
time, although variations are observed in other locations. PVI values vary from 0.4 to 0.7,
whereas SAVI values range from -0.5 to 0.3. All of the sample locations showed little
fluctuation in PVI, while the Sundarbans region showed a modest rise from 2019 to the present.
SAVI showed a linear trend across all of the zones, with the hill tract recording the lowest value
in 2007.

However, the variations didn't reflect a consistent pattern as we used satellite data from
two separate periods; the inaccuracy is related to the discrepancy in the wavelength scale of the

bands.
Raage Dinajpur Area Range Hill Tract Area Range Lawachara Area
= X —— N TN T Sed
NS, < ’/ o A\_i/
v Yea Y
S Madhupur Area Ring Sundarban Area
PVI
Gl
~——— NDMI
NDVI
—_— —— SAVI A A A /
N O N/ i — NN/
Year ' Year
Fig. 4. Comparison of the yearly mean of different vegetation indices.
Results
Seasonality

The findings of the graph (Fig. 5) provide a good understanding of the seasonal variance.
Several vegetation indices, including NDVI, GI, SAVI, and PVI, demonstrate good variability
for all of the study sites. It is also interesting that these indices exhibit maximum values from
July to October, during the monsoon season, minimum values from November to February
(winter), and medium values from March to April (the pre-monsoon season). As we inspect the
EBBI lines, we can observe that a parallel scenario is portrayed rather than much of a tendency
toward growth or deterioration. Therefore, EBBI's seasonality is of little real consequence for
any location.

We can bring to light some intriguing points if we carefully observe the NDMI curves.
Although NDMI does not show much variation for all the sites, its major shift is observed in
the Dinajpur region. This assists us in comprehending how effectively this measure reflects
seasonality in geographical areas with less forest cover.
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Lawachara Area Dinajpur Area Hill Tract Area

-
—
NDMI
NDVI
4 —PVI
— 2

Fig. 5. Seasonal variability of different vegetation indices.
Spatio-temporal variability

For the Spatio-temporal evaluation of vegetation indices (Fig. 6), trend lines are generated
using linear regression models to show how they vary over time, along with y-intercepts as
statistical measures. Here, we will observe how each vegetation index has evolved for all five
sample areas over the past 20 years.

We begin by reviewing EBBI, which has significantly decreased across all locations. The
Sundarban Mangrove Forest has had the lowest decline, whereas the Dinajpur area has
experienced the highest. The best-fitting line is detected for the Dinajpur region with a value of
0.7447. Second, we find a significant drop in Gl as well. The Hill tract region is indicated by
the best-fitting line with a value of 0.8. However, Gl is least deteriorated in the Dinajpur region
and is most degraded in the hill tract. Then, during the course of the time, all NDMI lines
exhibited a modest rise. Dinajpur has the best-fitting NDMI line, with a value of 0.5562 and it
has also shown a little growth compared to other areas. The NDVI patterns show a mixed
situation. It increases slightly in the Dinajpur and Sundarbans regions, while exhibiting a minor
decline in Lawachara, Madhupur, and the Hill Tract. However, the best-fitted line is identified
for Lawachara with a value of 0.3918.

PVI and SAVI demonstrate a somewhat similar dropping tendency across all the
geographic areas, as can be seen. The Sundarban mangrove forest is represented by the best-fit
curve for PVI and SAVI, with values of 0.4695 and 0.8107, respectively.

Finally, we'll concentrate on LAI's illustrations. As we know, the Leaf Area Index (LAI)
involves measuring how much leaf material is there in a forest cover. In all regions, LAI is
going up concurrently. But with several 0.592, the Dinajpur region demonstrates the best-fit
line.

201



202

Md. Shahadad Hossain et al.......

\
|

w—Dinajpur Area
wHill Tract Area

F o = o Lawachara Reserve Forest
fen Madhupur Reserve Forest
s Sundarbans Mangrove Forest

Fig. 6. Spatial variability among the areas based on different vegetation indices.

Trend analysis

We have presented the time series analysis trend of all vegetative indicators for each
specific sample location for the 20 years from 2002 to 2021, according to Figure 7. We will be
able to understand the past and the present condition and make predictions about how it could
be in the future from this. Initially, if we investigate the vegetation indices in the Dinajpur
region. We can discover that NDVI and NDMI are marginally rising while the remaining
indices, such as GI, PVI, SAVI, and EBBI, are somewhat falling. The perfect fit line among
them is given by GI with a value of 0.7781. As we can see in the second graph, the hill tract
region's NDMI and NDVI exhibit very mild increases and decreases, respectively, whereas the
trends for Gl, PVI, SAVI, and EBBI reflect a considerable decline. SAVI’s value of 0.6992
indicates that this region's line of best fit.

The patterns in the vegetation indices for the Lawachara and Madhupur regions are quite
comparable to those in the Hill tract regions. However, the best-fit line for Lawchara is shown
by Gl and SAVI for Madhupur, whose values are 0.7815 and 0.6674, respectively. The last part
is the Sundarbans, where all the areas covered by the indices follow the pattern of the indices,
but significantly, NDVI is only rising in this area. However, the best fit in this region shows a
value of 0.8107.

sundarbans Mangrove Forest Hill Tract Area

— EBB
— G|

NDMI

:A \ — sxominiidn —?’SIVI

\ w—SAVI

Fig. 7. Time series analysis of vegetation indices: 2002-2021.
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Discussion

To determine the Bangladesh forest health status and how it has evolved, we have used
seven vegetation indicators in this article. Seasonal trends and any indicators that exhibited
strong sensitivity to vegetation were also discovered. In our inspection, we identified
seasonality in the condition of the forest cover in Bangladesh, where the monsoon season lasts
from July to August. During this time, there is a lot of rain, which improves the forest's health.
According to our data, the months of July to October have the largest NDVI, GI, PVI, and SAVI
values, while March to April have the pre-monsoon season's median values.

Among the sample places in Bangladesh, our studied research region, Hill Tract,
Lawchara Reserve Forest, and Sundarban Mangrove Forest, are in reasonably good condition
and have not changed significantly over the years. However, the state of the Madhupur Reserve
Forest and the Dinajpur region has more or less degraded, and the time series analysis shows a
significant diminution.

First, we observe high points of SAVI, PVI, NDVI, and Gl for seasonality in the Dinajpur
region. While EBBI continues a flat line and the NDMI shows somewhat fluctuation. For
spatio-temporal variability, NDMI and LAI represent an increase, while PVI1, SAVI, EBBI, and
GI turn downwards. In time series analysis, all the indices climbed except for the NDVI.

Next, in Lawachara Reserve Forest, our investigation has found inflated seasonality lines
for SAVI, PVI, NDVI, and GlI, while the other two lines remained horizontal. The remaining
data in the variability analysis show a downswing, but the LAl and NDMI show modest
increases. However, trend analysis shows that leftovers are smooth while SAVI, PVI, GlI, and
EBBI decrease for this site.

Thirdly, the Hill tract region is identified in this study as having peak values in periodic
analysis for SAVI, PVI, NDVI, and GI. Regarding spatiotemporal variability, PVI, SAVI,
EBBI, and Gl appear to decline, while LAI, NDMI, and NDVI seem to rise. In terms of on-time
interval assessment, the rest decrease, while SAVI, PVI, Gl, and EBBI show an increase.

Fourthly, the sporadic inspection of Madhupur Reserve Forest shows an improvement in
all vegetation indices. For the LAI, NDMI, and NDVI, spatiotemporal data demonstrate an
upturn, while the spare depicts a downturn. When compared to the rest, the time-period inquiry
displays a growth for the NDVI and NDMI.

Lastly, this study has found that all vegetation indices—aside from EBBI—had higher
values in the Sundarban Mangrove Forest area. In the context of spatiotemporal findings, PVI,
SAVI, EBBI, and GI are diminished, while NDMI, NDVI, and LAI are intensified. When it
comes to time series investigation, the NDVI and NDMI exhibit significant values, while the
others are alternative.

We have acknowledged that all indices that reflect sensitivity, but are dependent on the
amount of forest cover, are used when it comes to categorizing vegetation sensitivity bands.
Except for EBBI, the other indices exhibit substantial reflectance in places with higher forest
cover, although in areas with less forest cover, the relevance of EBBI has also been noted.
However, considerable inconsistencies in accuracy have been noted due to the difference in the
wavelength of the bands, due to the usage of data from two satellites at identical times.

Conclusion

The current study attempted an integrated approach for rapid satellite-based monitoring
of changes in the forest region. This study demonstrates the ability of Landsat time series data
acquired between 2002 and 2021 to identify anomalies, temporal trends, and confirm the pattern
of changes over time. Vegetation indices in forest health evaluation demonstrated their
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sensitivity in our research locations, and seasonal patterns were observed. Additionally, we note
both positive and negative trends in the spatiotemporal analysis for various locations.

The primary drawback of Landsat data is its intra-year and inter-year availability, which
means that seasonal variation in vegetation conditions is unlikely to be assessed. Thus, an
integrated method is used, which combines coarse spatial resolution satellite data (Landsat)
with high spatial resolution satellite data (Sentinel). During the investigation, we discovered
that using data from two satellites at the same time highlights discrepancies. It is advised for
future research to conduct scrutiny to reduce the discrepancies.

The assessment revealed a spatiotemporal distribution of changes (physical and stress-
induced) across Bangladesh's forest cover, and the methodologies used in this study might be
easily applied to extract first-hand knowledge when conducting field verifications.
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