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Babil Governorate has witnessed radical changes in land use and
land cover (LULC) over the past few decades, driven by rapid
population growth and economic development. Despite this, knowledge
remains limited regarding land use patterns and the mechanisms of
change driven by human activities. Therefore, there is an urgent need to
study the transformations of LULC in Babil Governorate to determine
the factors influencing these changes, and to predict their future
trajectories. This study aims to assess LULC changes during the period
1990-2020 and to predict the expected changes up to 2050 by analyzing
land use and land cover data for 1990, 2000, 2010, and 2020. By
applying the LULC transition matrix and the Markov model, the study
could simulate the expected LULC patterns for the study area in the
future. The study results show that the region will experience substantial
changes in LULC during the period 2030-2050. Urban areas are
expected to increase gradually, while bare land is expected to decline
significantly. Water bodies are also expected to grow, and vegetation
lands are expected to remain relatively stable. These changes reflect the
intertwined effects of urban expansion, climate change, water inflows
from neighboring countries, and shifts in land use patterns. The results
indicate that current LULC trends will continue over the next three
decades. This study can provide decision-makers with the necessary
tools to develop sustainable land and water management policies.
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Introduction

LULC refers to changes in land use and land cover resulting from human activities
(Riggio et al., 2020). These modifications have seriously affected the ecological balance at
different local (study area) and international levels. As a result, this matter has become a focus
of the international community due to its impact on our planet (Anwar et al., 2022). As a
solution to this issue, geospatial models and open-source geospatial data have proven to be
powerful tools for monitoring and tracking the status and changes in land use and land cover.
This approach can effectively support efforts to protect the environment and sustainably
manage land (Rai et al., 2018). Due to the increase in income and population, cities and urban
areas have experienced significant expansion, which is natural with increasing human activity.

Land use patterns in these areas are influenced by various factors (industrial,
technological, globalization, economic, and administrative) (Fei et al., 2021). It is important to
know that rapid urban expansion significantly impacts the economic conditions of cities. This
widespread phenomenon, often resulting from poor urban planning, causes negative side effects
such as deforestation, decreased agricultural land, and the conversion of pastures into built-up
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areas (Feng et al., 2021). The forthcoming years will witness multiple and interconnected
challenges in land use due to the expected increase in demand for goods and services, which
will lead to the depletion of limited land resources (Popp et al., 2017). Therefore, making the
right decisions about the environment and long-term sustainable development is conditional on
the availability of accurate data on land use and land cover change. Consequently, this data is
essential for evaluating studies and discussions on current global changes. Given the expected
increase in demand for products and services, which puts increasing pressure on limited land
resources, the world will face new and intertwined challenges in land use in the near future
(Cuevas et al., 2016).

This study aims to analyze the spatial distribution of land use and land cover types in
Babil Governorate and to provide detailed information to support decision-making related to
natural resource management. Additionally, the study aims to evaluate the efficiency of the
Cellular Automata-Markov model in predicting future changes in land use.

Related work

A variety of spatial simulation models have been employed, including the conversion of
land use and its effects on a model developed by Das et al. (2019) and the future land use
simulation model proposed by Lin et al. (2020), to predict dynamic changes in land surface
cover over time and space.

Among the most prominent models that have received widespread attention in this field
is the CA-Markov model, which combines the power of Markov chains in representing temporal
changes with the flexibility of cellular automata in simulating spatial interactions, making it a
powerful tool for understanding the dynamics of complex spatial changes (Wang et al. 2021).
Furthermore, studies have shown that the CA-Markov model provides a powerful tool for
analyzing the complex spatial changes and offers valuable insights to support decision-making
in the field of spatial planning. For example, Ruben et al. (2020) and Kisamba and Li (2023)
successfully used this model to predict land cover changes, and they proposed sustainable land
use policies.

In a previous study, Matlhodi et al. (2021) compared the performance of the Cellular
Automata-Markov and GEOMOD models in predicting future land use changes in the Nepalese
Fewa Lake watershed. Their results showed that the Cellular Automata-Markov model
outperformed in simulating future scenarios.

Liu etal. (2017) proposed a novel Future Land Use Simulation (FLUS) model to forecast
changes in land use and land cover in the future. The model integrates top-down and bottom-
up approaches to accurately simulate the complex interactions between human activities and
climate change. The FLUS model was tested on a Chinese case study and outperformed existing
models in predicting future land use patterns under various scenarios. This innovative model
provides valuable insights for sustainable urban planning and policymaking.

Based on the promising results shown by the CA-Markov model in previous studies, we
applied this model for the first time in Babil Governorate to assess current land use change
patterns and to predict its future distribution until 2050. Thus, this study introduces a new
scientific contribution in this field at the level of Babil Governorate. A comprehensive study is
conducted on historical LULC change data in Babil Governorate. Changes in LULC were
assessed over different periods, and their causes were identified. Future land use in the study
area is also projected. The results of this study are expected to enhance the sustainable use of
natural resources in the study area.

Study Area

Babil Governorate is situated in the center of Iraq, south of the capital Baghdad, and is
the cradle of ancient civilizations. It is the fifth-largest governorate in Iraq in terms of
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population, with approximately two million inhabitants as of 2018 (Hashim et al., 2022).
Geographically, it extends between longitudes 43° 58' 10" and 44° 38' 35" East, and latitudes
32° 7' 25" and 33° 0' 35" North, covering an area of approximately 5119 km? (Talib and Laffta,
2024). 1t is bordered by Baghdad Governorate to the north, Wasit Governorate to the east,
Karbala and Anbar Governorates to the west, and Najaf and Qadisiyah Governorates to the
south (Talib and Laffta, 2024) (Fig. 1).

Babil Governorate experiences a hot and arid continental climate with summer
temperatures exceeding 50 °C. Despite these harsh climatic conditions, Babylon has managed
to develop a thriving agricultural economy through an extensive network of irrigation canals
that supply agricultural lands. This network contributes to the production of a variety of crops,
including grains, vegetables, and fruits, making agriculture a cornerstone of the local economy
(Hashim et al., 2022).

Administratively, the governorate is divided into six districts: Hilla (the governorate
center), Al-Mahawil, Al-Musayyib, Al-Hashimiyah, Al-Hamza Al-Gharbi, and Kothi (Hashim
etal., 2022).

Babil is renowned for its ancient historical sites dating back to the Sumerian and
Babylonian civilizations, making it the most important tourist destinations in Iraq for tourists
from all over the world. It is the place where visitors come to enjoy the beauty of its
archaeological sites and to learn more about its ancient  history.

https://en.wikipedia.org/wiki/BabyloniGovernorate).
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Fig. 1. Geographical map illustrating the location of Babylon Governorate and its administrative divisions
in the central part of Iraq

Materials and Methods

Opted method

A comprehensive methodology integrating satellite image processing, land use
classification, and Markov modeling is employed to predict future land use changes as
illustrated in Fig. 2.
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Fig. 2. Flow chart of the correction procedures.
Landsat datasets

A precise methodological framework is employed to analyze satellite imagery spanning
multiple temporal periods. Key considerations encompassed the selection of cloud-free images,
the assurance of high spatial resolution, and the maintenance of consistent acquisition dates
(Marti et al., 2016). Subsequently, the images are projected using the Universal Transverse
Mercator projection (UTM). Their geographic location is accurately determined using the
World Geodetic System 1984 (WGS84) and the ellipsoid (Okiemute et al., 2018).

Landsat 7 (+ETM) and Landsat 8 (OLI) datasets (Table 1) are carefully selected for the
study, considering the criteria above, pertinent scientific references, and the common use of
Landsat imagery in LULC studies. Land cover and land use dynamics are investigated using
four Landsat satellite images with a 10-year time interval (Table 1). The Landsat scenes are
obtained from the United States Geological Survey (USGS) Earth Explorer website
(http://earthexplorer.usgs.gov/).

Table 1: Remote sensing imagery used in this study.

Path  Row Landsat 7 (+ETM) Landsat 8 (OLI)
168 37 12/ July / 1990 1/July /2000 10/ July / 2010 13/ July / 2020
168 38 12 / July / 1990 1/July /2000 10/ July / 2010 13 /July / 2020
169 37 20/ July / 2020

Image processing operations

Initial image processing is carried out using ENVI 5.6 and ArcGIS desktop software
(Nath et al., 2022). This includes radiometric and atmospheric correction, as well as repairing
distortions caused by the Landsat 7 scan line corrector failure. To address missing data
(approximately 22% in the 2010 image), the Nearest Neighbor Interpolation technique is
employed. Spatially consistent spectral bands from Landsat 7 and 8 are merged to enhance
spectral information. Subsequently, the images are mosaicked and clipped to the study area.
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Google Earth imagery is used as a reference to establish ground control points for accurate
georeferencing of the Landsat images. To ensure accurate classification, a comprehensive
training dataset is created. For the years 1990, 2000, 2010, and 2020, training sites are identified
using on-screen digitization techniques on Landsat imagery and Google Earth Pro. To minimize
the impact of mixed pixels, homogeneous polygons are chosen as training sites. A stratified
random sampling technique is employed to generate 250 sample points per class from these
polygons. Additionally, independent validation samples (approximately 25 points per class) are
collected to assess classification accuracy.

A maximum likelihood classifier is employed to categorize the pixels into various LULC
classes. The unique spectral signatures of each LULC class are compared on the maps to
identify the specific land cover types in different areas of Babil Governorate. The classified
LULC classes are then compared to the corresponding types observed in Google Earth Pro
imagery. The classified images are converted from TIF to ASCII format using the “Raster to
ASCII” command for input into IDRISI Selva. The CA-Markov model is applied to analyze
historical LULC changes and to predict future trends.

Assessment of the accuracy of classification

Evaluating the accuracy and reliability of image classification methodologies is a crucial
stage in the research process (Lu and Lu, 2023). To guarantee reliability and discrimination, it
is advised that the accuracy level for LULC classification exceeds 90% as per previous studies
(Junaid et al., 2023). Studies have emphasized the importance of validating the model and its
accuracy in conducting a reliable LULC survey (Ruuska et al., 2018). This study relied on
Kappa statistics and total accuracy to evaluate the effectiveness of classification maps. Google
Earth images and satellite images are used to verify the results. An error matrix combined the
land use map, classified land cover, and ground reference information. Several metrics were
identified, such as product accuracy, user accuracy, overall accuracy, and Kappa coefficient
(Foody, 2020). The proportion of correctly classified pixels in the confusion matrix determined
overall accuracy, and the Kappa index indicated the degree of agreement between the classified
map and the reference data used (Twele et al., 2016). The following equations are used to
calculate these two measures:

Overall accuracy = g *100% (1)

where: D represents the total number of correct calls as summed along the major diagonal,
and T represents the total number of correct calls in the error matrix. While the Kappa index
(k) is calculated as follows:

T Z;=1 Yon— Z£=1(Yn+* Yin)
2
T2- Z;:l(yn+* Yin) ( )

where: T represents the total number of cells in the error matrix, r represents the number
of rows in the matrix, Y,,,, represents the total number of correct cells in a class (i.e., value in
row n and column n), Y, represents the total for row n, Y., represents the total for column n.

k=

Kappa indices are an essential tool for evaluating the accuracy of maps as they provide
information about how closely the results match. If the kappa value is greater than or equal to
75%, the maps are highly consistent; if it is between 50% and 75%, the agreement is average;
if it is less than or equal to 50%, it is poor (EI Baroudy, 2016; Wan et al., 2015). As a result, to
assess the CA-Markov model's ability to accurately simulate future land use and land cover
conditions, Wang and Zheng (2023), after simulating land use and land cover for 2020 using
classified images from 1990 and 2020, validated the CA-Markov model. Two map agreements
(actual and simulated for 2020) were evaluated using the Kappa index of agreement (Kia)
(Mathanraj et al., 2021), such as no information Kappa (Kno), location Kappa (Kiocation), and
standard Kappa (Kstandard), using the CROSSTAB module in IDRISI Selva software.
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Additionally, the simulated and actual areas of each land use and land cover class are compared
using the validate module. Therefore, the Kappa index is a suitable indicator; thus, land use and
land cover can be predicted for 2030, 2040, and 2050.

Methods

Land use and land cover change detection

Analyzing Land Use and Land Cover Change (LULCC) is essential to identify the
particular changes in different land use categories (Spruce et al., 2020). The land cover change
detection map is used to assess and examine the temporal changes in land use and land cover
within the defined area. The equation mentioned below is applied to estimate the size of the
changes that occurred in each category:

Ci =R —B; 3)

where: C; represents the change in extent for the class i, B; denotes the base image, and
R; is the most recent image.

The percentage change for each LULC class is calculated using the following equation:

_ Ri=Bi )

P; = 7,
where: P; denotes the percentage shift for the class i, and B; denotes the base image, and
R; is the most recent image.

Land Use and Land Cover (LULC) Change Prediction Using Cellular Automata-
Markov Model

The Cellular Automata-Markov (CA-Markov) model is a methodology that combines
cellular automata and Markov chains. This approach aims to predict future trends and
characteristics of LULC change. The cellular automata model looks at the uncertainty that
comes from several sources, such as the relationships between model components, the design
of the model, and the quality of the data used as input (Palmate et al., 2022). On the other hand,
the CA-Markov approach concentrates on the local interactions of cells, considering their
behavior in space and time. This method benefits from suitable computational capabilities for
dynamic simulation and visualization.

One of the most critical applications of the CA-Markov model involves analyzing the
transition probabilities among different LULC classes across various periods (Nouri et al.,
2019). By examining these transition probabilities, insights can be gained into the driving forces
behind land use changes and their potential future trajectories. This knowledge facilitates
predicting LULC characteristics and their potential environmental, natural resource, and
landscape implications (Deafalla, 2022). Leveraging the strengths of both Markov models and
cellular automata, the CA-Markov model has proven effective in simulating land use change in
previous studies (Abdelkarim, 2023). This model identifies potential spatial distributions of
transitions (Wang et al., 2021; Rimal et al., 2018).

The following stages are implemented throughout the process: the base map and LULC
maps for the period (1990-2020) at ten-year intervals, in addition to transition probability
images used to create LULC maps for 1990, 2000, 2010, and 2020. Using IDRISI Terrset
software, the transition probability and prospective transition images are processed.
Subsequently, a potential transition map for 2000—2010 is established to duplicate the land use
land cover map for 2020, and the Markov transition probability estimation technique is used to

model land use land cover maps for the period (2030-2050) at ten-year intervals based on 2010—
2020. The CA-Markov model utilizes the time factor to identify patterns and factors that
contribute to future modification:
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St t+1)=f(SE),n) )

where: n operates, representing the occurrence rate at any given moment, and S(t + 1)
means the system status at the instant of (¢t,t + 1).

The CA-Markov model is frequently employed to anticipate future stability and change
in LULC in a particular area, as well as to conduct ecological modeling and LULC monitoring.
The following formula is employed to forecast future changes in LULC:

S(t,t+1) =5(t) * P (6)

where: S(t + 1) is the system status at the time ¢ + 1 and, S(t) is the system status at
time t, P;; is the transition probability matrix in a state, which is defined as:

P11 P12 Pln
=|lpyl| =] P21 P22 P2a|[(0< Py @)
Pn,1 Pn,2 Pnn

where P represents the transition probability, P;; represents the probability that a

particular state will persist at any given time, and Pn represents the probability that it will transit
from one state to another in the future.

A high transition probability is closer to (1) than a low transition probability (Nath et al.,
2023). A Markov chain analysis is conducted to generate a LULC transition matrix quantifying
the probability of land cover changes between 1990-2000, 2000-2010, 2010-2020, and 1990-
2020. This transition matrix served as a foundation for projecting future LULC dynamics.
However, the Markov chain model exhibits limitations in capturing spatial dependencies,
needing a mechanistic explanation for change processes and disregarding the spatial
distribution of LULC, which are critical factors in simulating land cover patterns (Pandey et
al., 2021).

The cellular automata model is widely employed for the prediction of LULC due to its
ability to simulate and regulate the dynamics of intricate spatial systems. A CA model
comprises cells, cell space, neighborhood, time, and rules. It predicts new LULC patterns by
considering the previous states of neighboring cells (Castro et al., 2022). The influence of a
neighbor on a cell's change is determined by their spatial proximity, with closer neighbors
exerting a more significant impact. These weights are combined with transition probabilities to
estimate the likelihood of changes in neighboring cells, preventing solely random predictions.
Integrating Markov chain principles, the CA model incorporates the preceding LULC state and
utilizes the conditions of neighboring cells to define transition rules (Koko et al., 2020). The
model's suitability for dynamic modelling within Geographic Information Systems and remote
sensing environments is attributed to its analytical capabilities (Chuvieco, 2020). However, the
CA model necessitates refinement to establish clear transition rules and modelling frameworks.
As a result, integrating it with dynamic and other empirical models, like the Cellular Automata-
Markov model, is essential for conducting a comprehensive analysis of LULC (Lacher et al.,
2023).

The procedures for running the CA-Markov model in the IDRISI-Selva program involve
the following steps: The first stage entailed the execution of two models using land-cover maps
for the periods 1990-2000, 2000-2010, 2010-2020, and 1990-2020. This process generated a
transition probability matrix and a transition area matrix. The transition probability matrix is
determined through cross-tabulation of multiple pairs of temporal images. Over a
predetermined period, this matrix exhibits the likelihood of each land cover class transitioning
to another. The transition area matrix contains the anticipated number of pixels that may transit
from one land cover class to another over a specified number of time units. Simultaneously, the
conditional probability map denotes the probability that each pixel of a land cover class will be
situated at a site with a specific class after a particular time (Aneesha Satya et al., 2020).
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Transition probability matrices for periods 1 and 2 are generated by employing a variety of
historical land use scenarios for the periods 1990-2000 and 2000-2020. The second stage
entailed using a standard 5x5 adjacency filter to ascertain the perimeter of each cell. The
scenario-based approach is implemented to simulate the prospective land use pattern during the
final stage. LULC maps classified for 1990 and 2000 are employed to calibrate and refine the
Markov algorithm. Time 1 is utilized in 1990, while time 2 is utilized in 2000. Transition
probabilities between time one and time two are employed to simulate the land use pattern in
2020. The cellular automata Markov model is validated to assess the accuracy of its predictions
for the year 2020. This process involves a statistical method to differentiate between locational
and quantitative errors by comparing two images (Zhang et al., 2021). The Kappa statistic index
is employed to ascertain the degree of concordance between the actual and forecast 2020 land
cover maps. An acceptable Kappa index is obtained, indicating reliable land use modelling and
prediction. Subsequently, the classified land cover map of 2020 is utilized as a baseline for
predicting potential land use in 2030, 2040, and 2050.

The Markov chain model determines the change in land area from the base year to the
projected year. This model generates prospective probabilities of land cover and land use and a
more comprehensive understanding of how to adapt factors that influence land cover and land
use change, which benefits decision-makers (Tadese et al., 2021). This model clarifies the
dynamics of land cover and land use, which is crucial for developing and planning various land
use policies that will improve the management of appropriate land cover and land use (Getu
and Bhat 2022). The model effectively anticipates future land use shifts by analyzing the
underlying causes of land use alterations, the suitability of different land use combinations, and
other influential elements like transportation infrastructure, waterways, and urban centers. This
model is particularly effective in simulating land use patterns in dispersed regions. In addition,
the research has demonstrated that the CA-Markov model is more effective than other models
in accurately simulating land use patterns and landscapes including the Artificial Neural
Networks-Cellular Automata (ANN-CA) model, the Future Land Use Simulation (FLUS)
model, and the Conversion of Land Use and its Effects (CLUE) model (Nath et al., 2020; and
Wang et al., 2021).

Model Calibration and Validation

In the absence of accurate evaluation data, it becomes necessary to make future
adjustments to the procedures for assessing prediction accuracy, model calibration, and
validation to improve the modeling process. In a study conducted by Nath et al. (2020), the chi-
square test () was used to verify the accuracy of estimated land use images compared to real-
world data for 2020. However, this comparison alone may not be sufficient to accurately assess
the spatial distribution of land use classes in the study area. Therefore, researchers resorted to
using the Kappa index, a more accurate statistical tool, to handle this issue (Debnath et al.,
2023). This technique involved calculating three types of Kappa index: location Kappa (K
location), quantity Kappa (Kquantity), and no information Kappa (K no), to distinguish between
spatial and quantitative errors in the predicted and actual images. These indices are used to
evaluate the accuracy of the CA-Markov model, where higher values show a higher level of
concordance between the model and reality. Kappa index values range from 0 to 1, as values
closer to 1 indicate perfect agreement. According to Beroho and colleagues (2024) (Beroho et
al., 2023), a Kappa value of less than 0.5 indicates poor agreement, while a value of 0.75
indicates moderate agreement, and a value greater than 0.75 indicates strong agreement.

Results and Discussion
Changes in LULC categories in Babil Governorate

The study area exhibited four LULC classes, with an assessment revealing historical
transformations and change patterns for each. The main LULC types in the study area include
urban lands, bare soil land, water bodies, and vegetation lands, and the total quantity has
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actually changed over the period 1990-2020. However, an evaluation of the transformations
between these land cover categories showed a significant shift between them, as shown in Fig.
3 and Table 2. Babil Governorate faced several challenges, including urban expansion, loss of
vegetation lands, and a decrease in water bodies.
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Fig. 3. LULC Changes in the Babil Governorate for 1990, 2000, 2010, and 2020.
Table 2: Distribution of LULC in Babil Governorate in 1990, 2000, 2010, and 2020.

Classes 1990 2000 2010 2020

Area (km?) Area%  Area (km?) Area%  Area(km?) Area% Area(km®)  Area%
Urban lands 921.8394 17.2770 1168.7976 21.9054 1160.6328 21.7524 1638.1863 30.7026
Bare soil lands 3034.5714 56.8735 3160.9935 59.2429 2525.7564 47.3373 2321.6850 43.5127
Water bodies 82.3518 1.5434 32.7924 0.6146 73.9260 1.3855 161.1567 3.0204
Vegetation lands  1296.8910 24.3061 973.0701 18.2371 1575.3384 29.5248 1214.6256 22.7643
Total 5335.6536 100 5335.6536 100 5335.6536 100 5335.6536 100

Table 2 presents data on land cover and land use in the region between 1990 and 2020,
showing a significant increase in the area of urban land from 921.8394 km? to 1638.1863 kmz2,
attributed to population growth and urban expansion. Conversely, the area of bare soil land
experienced a significant decrease from 3034.5714 km? to 2321.6850 kmz2, as a result of
conversion to other uses such as agriculture or construction. The area of water bodies also
experienced fluctuations during the study period, depending on the volume of water imports
from neighboring countries for the Euphrates River, as well as monthly releases from the
governorate's water allocation and climate changes. The areas of vegetation land witnessed
noticeable fluctuations between increases and decreases, mainly due to the expansion plans for
crop cultivation implemented by the concerned authorities.

Overall, the data show significant shifts in land use between 1990 and 2020, represented
by an expansion of urban and vegetation areas at the expense of a decrease in the area of bare
soil land, reflecting population growth, urban expansion, and an increase in marketing plans for
agricultural crop cultivation.
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Cross-Tabulation Matrix Results

Based on the validation using Kappa indices, the CA-Markov model is deemed suitable
for simulating the land cover and land use map for 2050 using transition probabilities from 1990
to 2020 and the 2020 class map as a baseline. Therefore, the model is deemed suitable for this
application. The metrics are determined by employing the subsequent equations (Gasirabo et
al., 2023):

_ Gw Hm
Ko = —2— (8)
($)~Hm)
Gw) Hn
K oy = ———— 9
location Sw) - Hw) ( )
_GwmHm
Kstandard T s,—H (10)
)~ Hw)

where: G, H(y, and S,y provide moderate grid cell-level information, while H,,), S,
and S offer precise grid cell-level information across the topography.

An assessment is implemented to identify the components of agreement or disagreement
(Table 3), and these reasons were categorized into two main classes: spatial distribution errors
(0.1181) and quantity errors (0.0520). Thus, the results suggest that the primary cause of the
discrepancy between the recorded and actual data was spatial distribution errors rather than
quantity issues (refer to Fig. 4). Fig. 4 shows the simulation results. The results show a good
similarity between the actual LULC of Babil Governorate in 2020 and the simulated land use
and land cover. The model's performance in forecasting LULCCs was verified by simulating
land use and land cover for 2020, utilizing transition probabilities for the period 1990-2000.
Subsequently, the simulated results were compared to classified land use and land cover data
for 2020, with differences in Kappa values employed as an accuracy measure.

The simulation analysis demonstrated a high level of agreement among the results, with
Kappa indices of 0.79 for both Kno, and Kiocation, and 0.72 for Kstandarg, @S shown in Table 4. This
indicates the reliability and effectiveness of the model in predicting future land cover and land
use in the biosphere. Furthermore, visual inspection reveals a relatively close match between
the land cover and land use classes in the simulated data and the classified data for 2020. These
findings suggest that the modeling outcomes are reliable and that the broad patterns of modeled
land cover and land use closely align with real-world patterns.

Table 3: Validation assessment determines levels of agreement and disagreement between the two images.

Agreement / Disagree Value Value %
Agreement Chance 0.2000 20.00
Agreement Quantity 0.1853 18.53
Agreement Strata 0.0000 00.00
Agreement Grid cell 0.4445 44.45
Disagree Grid cell 0.1181 11.81
Disagree Strata 0.0000 00.00
Disagree Quantity 0.0520 5.20
Table 4: Validate the simulated 2020 Land Use Land Cover image.

Coefficient Value Value %

Kno 0.79 79 %

Klocation 0.79 9%

Kstandard 0.72 72 %
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LULCC Prediction Results in the Coming 2030, 2040 and 2050 years

A transition probability matrix is calculated to model the likelihood of land cover changes
between 1990 and 2020 (Table 5). This matrix is then used to predict future land cover and land

use patterns in the years 2030, 2040, and 2050.

Table 5. Transition probability matrix over the period 1990-2020.

2020
1990 Urban lands Bare soil lands Water bodies Vegetation lands
Urban lands 0.4517 0.3515 0.0165 0.1804
Bare soil lands 0.2805 0.5894 0.0352 0.095
Water bodies 0.0929 0.1088 0.5885 0.2098
Vegetation lands 0.3631 0.1606 0.0203 0.4559

The presented matrix shows the probability of land use changes between 1990 and 2020.
The matrix indicates an increased probability of other land use types transforming into urban
areas between 1990 and 2020. This trend is driven by factors such as population growth, urban
expansion, and economic transformation. The matrix shows a probability of urban land
transforming into bare soil land (0.3515) due to the security instability and military operations
between 2003 and 2017 in the governorate. The matrix shows a probability of bare soil land
transforming into urban land (0.2805). This may reflect changes in the direction of urban
expansion due to the unstable security situation. The matrix indicates a low probability of water
bodies transforming into other land-use types. This may be due to the importance of water
bodies for ecosystems and the existence of laws to protect them. The matrix shows a probability
of vegetation lands transforming into urban lands (0.3631) due to population growth and urban
expansion. These changes are taken into account when forecasting future transformations in
2030, 2040, and 2050. Based on the ongoing changes, changes in LULC are designed, and a
change map for the years 2030, 2040, and 2050 is obtained. From Fig. 6, it can be observed that
the changes will occur mainly in water bodies and barren lands, and how their extent will
expand. The study predicts a gradual increase in urban areas, a sharp decline in barren lands,
and a significant growth in water bodies, with relative stability of green areas, reflecting the
impacts of urban expansion, climate change, and changing land use patterns. In 2030, the area
of urban land will reach approximately 0.2231847 square kilometers, increasing to 1875.1473
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square kilometers in 2040, and then decreasing slightly to 2793.1860 square kilometers in 2050.
These results indicate a trend towards urban expansion, which is common in many areas due to
population growth and economic development. In contrast to urban areas, barren lands are
expected to experience a significant decrease in their area. In 2030, the area of barren land will
be approximately 2156.8860 square kilometers, decreasing to 2089.2600 square kilometers in
2040, and then decreasing further to 1810.1160 square kilometers in 2050. This decrease may
be attributed to several factors, such as urban expansion or changing land use for other purposes.
Regarding water bodies, they are expected to experience a significant increase in their area. In
2030, the area of water bodies will be approximately 228.1797 square kilometers, increasing to
259.7607 square kilometers in 2040, and then experiencing a significant jump to 554.4297
square kilometers in 2050. This significant increase may be the result of the construction of
dams and reservoirs, changes in rainfall patterns, or other factors affecting the water cycle. On
the other hand, green areas are expected to experience relatively minor changes during the
projected period. In 2030, the area of land covered by vegetation will be approximately
1103.5656 square kilometers, increasing slightly to 1111.4856 square kilometers in 2040, and
then decreasing slightly to 1110.8286 square kilometers in 2050. These results indicate a
relative stability in the area of green land with some minor fluctuations (Fig. 5 and Table 6).
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Table 6. Statistical distribution of the modeled LULC in 2020, 2030, 2034, and 2050.

Classes 2020 2030 2040 2050

Area (km?)  Area% Area (km?)  Area% Area (km?)  Area% Area (km?)  Area%
Urban lands 1638.1863 30.7026 1847.0223 34.6166 1875.1473 35.1437 1860.2793 34.8651
Bare soil lands 2321.6850 43.5127 2156.8860 40.4240 2089.2600 39.1566 1810.1160 33.9249
Water bodies 161.1567 3.0204 228.1797 4.2765 259.7607 4.8684 554.4297 10.3910
Vegetation lands 1214.6256 22.7643 1103.5656 20.6829 1111.4856 20.8313 1110.8286 20.8190
Total 5335.6536 100 5335.6536 100 5335.6536 100 5335.6536 100

The results indicate the likelihood of significant transformations in Land Use and Land
Cover (LULC) patterns within the study area as demonstrated by the Cellular Automata-
Markov (CA-Markov) model. This model has proven highly efficient in simulating
spatiotemporal changes in LULC patterns, confirming the area’s exposure to varying levels of
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dynamics and change. Therefore, strategic land use planning and water resource management
are of paramount importance under these circumstances. Studying how land is used and how it
has changed in the past, along with the reasons for these changes, is crucial for predicting how
land will be used in the future. Science supports this hypothesis, and this is precisely the
approach taken in this study (Keshtkar and Voigt, 2016). Therefore, documenting these
transformations is essential to support future decision-making. However, given this study's
focus on direct driving factors, uncertainty about future LULC patterns necessitates the
integration of additional factors into the modeling process, such as population changes, changes
in the climate, natural disasters, and the state of the economy. This would contribute to a deeper
understanding of the complex LULC change processes and thus the development of more
comprehensive and effective management strategies.

Conclusion

This study aims to assess and predict future changes in Land Use and Land Cover (LULC)
in Babil Governorate. In order to achieve this goal, a hybrid-integrated model combining
cellular automata and Markov chains is employed. GIS techniques and multi-temporal satellite
data are used to monitor changes in LULC from 1990 to 2020.

By reviewing the transformation of LULC changes in Babil Governorate from 1990 to
2020, it reveals a significant increase in urban area, primarily due to population growth and
urban expansion. Conversely, barren lands experienced a noticeable decline as they were
converted to other uses such as agriculture and construction. Water bodies, on the other hand,
exhibited fluctuations in their area during the study period, influenced by climate changes and
water imports from neighboring countries. Additionally, the area of green lands increased due
to the rise in marketing plans for crops. Overall, these results demonstrate substantial
transformations in land use within the governorate, with urban and green areas expanding at the
expense of barren lands, reflecting the demographic, economic, and environmental changes
experienced by the governorate.

The study divides the LULC maps into four primary classes: urban areas, barren lands,
water bodies, and green areas. This detailed classification enabled a comprehensive
understanding of the spatial distribution of different land use types in the governorate,
facilitating the prediction of future scenarios. The accuracy of the simulated LULC map for
2020 is assessed using the Kappa index, and the evaluation results show agreement with the
map extracted from satellite images, confirming the efficiency of the model used in the
simulation. The analysis reveals that the factors influencing LULC changes vary with the type
of cover and evolve.

The advanced CA-Markov model is used to simulate LULC patterns in the governorate
until 2050. The simulation results demonstrate the model's ability to generate accurate future
LULC scenarios, indicating its high efficiency in this field. Despite the promising results
obtained by the study, it is essential to emphasize the importance of integrating the latest local
population statistics into future simulation models. This is because population growth is a
significant factor influencing land use changes, and neglecting it could reduce the accuracy of
predictions. Therefore, future studies should focus on analyzing the complex relationship
between population growth and LULC changes for a more comprehensive understanding of
long-term environmental change processes and their impact on the sustainability of natural
resources.

Acknowledgments

We would like to express our sincere gratitude to all those who contributed to the success
of this research, especially the Hindiya Dam Irrigation Project Directorate in Babil and the Babil
Municipality Directorate, for providing us with valuable information and data that contributed
to the completion of this work.



Spatial Simulation of Future Changes in the LULC for Babil Governorate Using Cellular Automata.......

References

Abdelkarim, A.J.G., 2023. Monitoring and forecasting of land use/land cover (LULC) in Al-
Hassa Oasis, Saudi Arabia based on the integration of the Cellular Automata (CA) and
the Cellular Automata-Markov Model (CA-Markov). Geology, Ecology, and
Landscapes, pp. 1-32. https://doi.org/10.1080/24749508.2022.2163741

Aneesha Satya, B., Shashi, M. and Deva, P., 2020. Future land use land cover scenario
simulation using open-source GIS for the city of Warangal, Telangana, India. Applied
Geomatics, 12(3), pp. 281-290. https://doi.org/10.1007/s12518-020-00298-4

Anwar, Z., Alam, A., Elahi, N. and Shah, I., 2022. Assessing the trends and drivers of land use
land cover change in district Abbottabad lower Himalayan Region Pakistan. Geocarto
International, 37(25), pp. 10855-10870. https://doi.org/10.1080/10106049.2022.2040604

Beroho, M., Briak, H., Cherif, E.K., Boulahfa, I., Ouallali, A., Mrabet, R., Kebede, F.,
Bernardino, A. and Aboumaria, K., 2023. Future scenarios of land use/land cover (LULC)
based on a CA-Markov simulation model: case of a Mediterranean watershed in
Morocco. Remote Sensing, 15(4), 1162. https://doi.org/10.3390/rs15041162

Castro, M.L., Machado, P., Santos, I., Rodriguez-Fernandez, N., Torrente-Patifio, A. and
Carballal, A., 2022. State of the art on artificial intelligence in land use
simulation. Complexity, 2022(1), 2291508. https://doi.org/10.1155/2022/2291508

Chuvieco, E., 2020. Fundamentals of satellite remote sensing: An environmental approach.
CRC Press: Boca Raton, FL, USA. https://doi.org/10.1201/9780429506482

Cuevas, S.C., 2016. The interconnected nature of the challenges in mainstreaming climate
change adaptation: evidence from local land use planning. Climatic change, 136(3), pp.
661-676. https://doi.org/10.1007/s10584-016-1625-1

Das, P., Behera, M.D., Pal, S., Chowdary, V.M., Behera, P.R. and Singh, T.P., 2019. Studying
land use dynamics using decadal satellite images and Dyna-CLUE model in the Mahanadi
River basin, India. Environmental monitoring and assessment, 191, pp. 1-17.
https://doi.org/10.1007/s10661-019-7698-3

Deafalla, T., 2022. Integrative Assessment and Modelling of the Non-Timber Forest Products
Potential in Nuba Mountains of Sudan by Field Methods, Remote Sensing and GIS, Ph.D.
Thesis, Unterkdinfte in der Néhe, Dresden, Germany.
https://tud.qucosa.de/api/qucosa%3A78638/attachment/ATT-0/

Debnath, J., Sahariah, D., Lahon, D., Nath, N., Chand, K., Meraj, G., Kumar, P., Singh, S.K.,
Kanga, S. and Faroog, M., 2023. Assessing the impacts of current and future changes of
the planforms of river Brahmaputra on its land use-land cover. Geoscience
Frontiers, 14(4), 101557. https://doi.org/10.1016/j.gsf.2023.101557

El Baroudy, A.A., 2016. Mapping and evaluating land suitability using a GIS-based
model. Catena, 140, pp. 96-104. https://doi.org/10.1016/j.catena.2015.12.010

Fei, R., Lin, Z. and Chunga, J., 2021. How land transfer affects agricultural land use efficiency:
Evidence from China’s agricultural sector. Land Use Policy, 103, 105300.
https://doi.org/10.1016/j.landusepol.2021.105300

Feng, B., Zhang, Y. and Bourke, R., 2021. Urbanization impacts on flood risks based on urban
growth data and coupled flood models. Natural Hazards, 106(1), pp. 613-627.
https://doi.org/10.1007/s11069-020-04480-0

Foody, G.M., 2020. Explaining the unsuitability of the kappa coefficient in the assessment and
comparison of the accuracy of thematic maps obtained by image classification. Remote
sensing of environment, 239, 111630. https://doi.org/10.1016/j.rse.2019.111630



https://doi.org/10.1080/24749508.2022.2163741
https://doi.org/10.1007/s12518-020-00298-4
https://doi.org/10.1080/10106049.2022.2040604
https://doi.org/10.3390/rs15041162
https://doi.org/10.1155/2022/2291508
https://doi.org/10.1201/9780429506482
https://doi.org/10.1007/s10584-016-1625-1
https://doi.org/10.1007/s10661-019-7698-3
https://tud.qucosa.de/api/qucosa%3A78638/attachment/ATT-0/
https://doi.org/10.1016/j.gsf.2023.101557
https://doi.org/10.1016/j.catena.2015.12.010
https://doi.org/10.1016/j.landusepol.2021.105300
https://doi.org/10.1007/s11069-020-04480-0
https://doi.org/10.1016/j.rse.2019.111630

344 Hayder Hameed Jassoom and  Rabab Saadoon Abdoon

Gasirabo, A., Xi, C., Hamad, B.R. and Edovia, U.D., 2023. A CA-Markov-Based Simulation
and Prediction of LULC Changes over the Nyabarongo River Basin,
Rwanda. Land, 12(9), 1788. https://doi.org/10.3390/Iand12091788

Getu, K. and Bhat, H.G., 2022. Dynamic simulation of urban growth and land use change using
an integrated cellular automata and Markov chain models: a case of Bahir Dar city,
Ethiopia. Arabian Journal of Geosciences, 15(11), 1049. https://doi.org/10.1007/s12517-
022-10304-1

Hashim, A.H., Jasim, O.Z. and Salih, M.M., 2022. The Establishing of Geospatial Database for
Agricultural Lands of Islamic WAQF In Irag: Case Study Babil Province. In I0OP
Conference Series: Earth and Environmental Science 961(1), 012025. 10P Publishing.
https://doi. 10.1088/1755-1315/961/1/012025

Junaid, M., Sun, J., Igbal, A., Sohail, M., Zafar, S. and Khan, A., 2023. Mapping LULC
dynamics and its potential implication on forest cover in malam jabba region with landsat
time series imagery and random forest classification. Sustainability, 15(3), 1858.
https://doi.org/10.3390/su15031858

Keshtkar, H. and Voigt, W., 2016. A spatiotemporal analysis of landscape change using an
integrated Markov chain and cellular automata models. Modeling Earth Systems and
Environment, 2, pp. 1-13. https://doi.org/10.1007/s40808-015-0068-4

Kisamba, F.C. and Li, F., 2023. Analysis and modelling urban growth of Dodoma urban district
in Tanzania using an integrated CA—Markov model. Geo Journal, 88(1), pp. 511-532.
https://doi.org/10.1007/s10708-022-10617-4

Koko, A.F., Yue, W., Abubakar, G.A., Hamed, R. and Alabsi, A.A.N., 2020. Monitoring and
predicting spatio-temporal land use/land cover changes in Zaria City, Nigeria, through an
integrated cellular automata and Markov chain model (CA-
Markov). Sustainability, 12(24), 10452. https://doi.org/10.3390/su122410452

Lacher, I., Fergus, C., McShea, W.J., Plisinski, J., Morreale, L. and Akre, T.S., 2023. Modeling
alternative future scenarios for direct application in land use and conservation
planning. Conservation Science and Practice, 5(7), e12940.
https://doi.org/10.1111/csp2.12940

Lin, W., Sun, Y., Nijhuis, S. and Wang, Z., 2020. Scenario-based flood risk assessment for
urbanizing deltas using future land-use simulation (FLUS): Guangzhou Metropolitan
Area as a case study.Science of the Total Environment, 739, 139899.
https://doi.org/10.1016/j.scitotenv.2020.139899

Lu, Z. and Lu, Y., 2023. Enhancing the reliability of image classification using the intrinsic
features. Knowledge-Based Systems, 263, 110256.
https://doi.org/10.1016/j.knosys.2023.110256

Liu, X., Liang, X,, Li, X., Xu, X., Ou, J., Chen, Y., Li, S. and Pei, F., 2017. A future land use
simulation model (FLUS) for simulating multiple land use scenarios by coupling human
and natural effects. Landscape and Urban Planning, 168, pp. 94-116.
http://dx.doi.org/10.1016/j.landurbplan.2017.09.019

Marti, R., Gascoin, S., Berthier, E., De Pinel, M., Houet, T. and Laffly, D., 2016. Mapping

snow depth in open alpine terrain from stereo satellite imagery. The Cryosphere, 10(4),
pp. 1361-1380. https://doi.org/10.5194/tc-10-1361-2016



https://doi.org/10.3390/land12091788
https://doi.org/10.1007/s12517-022-10304-1
https://doi.org/10.1007/s12517-022-10304-1
https://doi. 10.1088/1755-1315/961/1/012025
https://doi.org/10.3390/su15031858
https://doi.org/10.1007/s40808-015-0068-4
https://doi.org/10.1007/s10708-022-10617-4
https://doi.org/10.3390/su122410452
https://doi.org/10.1111/csp2.12940
https://doi.org/10.1016/j.scitotenv.2020.139899
https://doi.org/10.1016/j.knosys.2023.110256
http://dx.doi.org/10.1016/j.landurbplan.2017.09.019
https://doi.org/10.5194/tc-10-1361-2016

Spatial Simulation of Future Changes in the LULC for Babil Governorate Using Cellular Automata.......

Mathanraj, S., Rusli, N. and Ling, G.H.T., 2021. Applicability of the CA-Markov model in
land-use/land cover change prediction for urban sprawling in Batticaloa Municipal
Council, Sri Lanka. In IOP Conference Series: Earth and Environmental Science (Vol.
620, No. 1, p. 012015). IOP Publishing. https://doi.org/10.1088/1755-1315/620/1/012015

Matlhodi, B., Kenabatho, P.K., Parida, B.P. and Maphanyane, J.G., 2021. Analysis of the future
land use land cover changes in the Gaborone dam catchment using CA-Markov model:
Implications on water resources. Remote Sensing, 13(13), 2427.
https://doi.org/10.3390/rs13132427

Mohan, C., Western, A.W., Wei, Y. and Saft, M., 2018. Predicting groundwater recharge for
varying land cover and climate conditions—a global meta-study. Hydrology and Earth
System Sciences, 22(5), 2689-2703. https://doi.org/10.5194/hess-22-2689-2018.

Nath, B., Choudhury, N. and Mitra, A.K., 2022. Observing tectonic-geomorphological changes
along the Dawki Fault and adjoining areas of Sylhet, Bangladesh from 1980 to 2020 using
remote sensing and GIS techniques. Journal of Earth System Science, 131(3), 160.
https://doi.org/10.1007/s12040-022-01900-6

Nath, B., Wang, Z., Ge, Y., Islam, K., P. Singh, R. and Niu, Z., 2020. Land use and land cover
change modeling and future potential landscape risk assessment using Markov-CA model
and analytical hierarchy process. ISPRS International Journal of Geo-Information, 9(2),
134. https://doi.org/10.3390/ijgi9020134

Nath, N., Sahariah, D., Meraj, G., Debnath, J., Kumar, P., Lahon, D. and Kanga, S., 2023. Land
use and land cover change monitoring and prediction of a UNESCO world heritage site:
Kaziranga eco-sensitive zone using cellular automata-Markov model. Land, 12(1), 151.
https://doi.org/10.3390/land12010151

Nouri, H., Faramarzi, M.M. and Sadeghi, S.H., 2019. Impact of regional rangeland cover
degradation on increasing dusty days in West of Iran. Journal of Rangeland Science, 9(3),
pp. 286-299.  https://oiccpress.com/journal-of-rangeland-science/article/impact-of-
regional-rangeland-cover-degradation-on-increasing-dusty-days-in-west-of-iran/

Okiemute, E.S., Oduyebo, O.F. and Olulade, S.A., 2018. On the determination of NTM and
UTM positions from post processing of static DGPS observations on the Nigeria Minna
Datum. Eteje SO, Oduyebo OF and Olulade SA (2018): On the Determination of NTM
and UTM Positions from Post Processing of Static DGPS Observations on the Nigeria
Minna Datum. International Journal of Engineering Research and Advanced Technology
(JERAT), 4(10), pp. 10-24. http://doi.org/10.31695/IJERAT.2018.3332

Palmate, S.S., Wagner, P.D., Fohrer, N. and Pandey, A., 2022. Assessment of uncertainties in
modelling land use change with an integrated cellular automaton—Markov chain
model. Environmental Modeling and Assessment, pp. 1-19.
https://doi.org/10.1007/s10666-021-09804-3

Pandey, S., Kumar, P., Zlatic, M., Nautiyal, R. and Panwar, V.P., 2021. Recent advances in
assessment of soil erosion vulnerability in a watershed. International Soil and Water
Conservation Research, 9(3), pp. 305-318. https://doi.org/10.1016/j.iswcr.2021.03.001

Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpendder, F., Stehfest, E., Bodirsky, B.L.,
Dietrich, J.P., Doelmann, J.C., Gusti, M. and van Vuuren, D.P., 2017. Land-use futures
in the shared socio-economic pathways. Global Environmental Change, 42, pp. 331-345.
https://doi.org/10.1016/j.gloenvcha.2016.10.002

Rai, P.K., Chandel, R.S., Mishra, V.N. and Singh, P., 2018. Hydrological inferences through
morphometric analysis of lower Kosi River basin of India for water resource management
based on remote sensing data. Applied water science,8, pp. 1-16.
https://doi.org/10.1007/s13201-018-0660-7



https://doi.org/10.1088/1755-1315/620/1/012015
https://doi.org/10.3390/rs13132427
https://doi.org/10.5194/hess-22-2689-2018
https://doi.org/10.1007/s12040-022-01900-6
https://doi.org/10.3390/ijgi9020134
https://doi.org/10.3390/land12010151
https://oiccpress.com/journal-of-rangeland-science/article/impact-of-regional-rangeland-cover-degradation-on-increasing-dusty-days-in-west-of-iran/
https://oiccpress.com/journal-of-rangeland-science/article/impact-of-regional-rangeland-cover-degradation-on-increasing-dusty-days-in-west-of-iran/
http://doi.org/10.31695/IJERAT.2018.3332
https://doi.org/10.1007/s10666-021-09804-3
https://doi.org/10.1016/j.iswcr.2021.03.001
https://doi.org/10.1016/j.gloenvcha.2016.10.002
https://doi.org/10.1007/s13201-018-0660-7

346 Hayder Hameed Jassoom and  Rabab Saadoon Abdoon

Riggio, J., Baillie, J.E., Brumby, S., Ellis, E., Kennedy, C.M., Oakleaf, J.R., Tait, A., Tepe, T.,
Theobald, D.M., Venter, O., Watson, J.E. M. and Jacobson, A.P., 2020. Global human
influence maps reveal clear opportunities in conserving Earth’s remaining intact
terrestrial ~ ecosystems. Global ~ Change  Biology, 26(8), pp.  4344-4356.
https://doi.org/10.1111/gcb.15109

Rimal, B., Zhang, L., Keshtkar, H., Haack, B.N., Rijal, S. and Zhang, P., 2018. Land use/land
cover dynamics and modeling of urban land expansion by the integration of cellular
automata and markov chain. ISPRS International Journal of Geo-Information, 7(4), 154.
https://doi.org/10.3390/ijgi7040154

Ruben, G.B., Zhang, K., Dong, Z. and Xia, J., 2020. Analysis and projection of land-use/land-
cover dynamics through scenario-based simulations using the CA-Markov model: A case
study in Guanting Reservoir Basin, China. Sustainability, 12(9), 3747.
https://doi.org/10.3390/su12093747

Ruuska, S., Hamalainen, W., Kajava, S., Mughal, M., Matilainen, P. and Mononen, J., 2018.
Evaluation of the confusion matrix method in the validation of an automated system for
measuring feeding behaviour of cattle. Behavioural processes, 148, pp. 56-62.
https://doi.org/10.1016/j.beproc.2018.01.004

Spruce, J., Bolten, J., Mohammed, I.N., Srinivasan, R. and Lakshmi, V., 2020. Mapping land
use land cover change in the Lower Mekong Basin from 1997 to 2010. Frontiers in
environmental science, 8, 21. https://doi.org/10.3389/fenvs.2020.00021

Tadese, S., Soromessa, T. and Bekele, T., 2021. Analysis of the current and future prediction
of land use/land cover change using remote sensing and the CA-Markov model in Majang
forest biosphere reserves of Gambella, Southwestern Ethiopia. The scientific world
journal, 2021(1), 6685045. https://doi.org/10.1155/2021/6685045

Twele, A., Cao, W., Plank, S. and Martinis, S., 2016. Sentinel-1-based flood mapping: a fully
automated processing chain. International Journal of Remote Sensing, 37(13), pp. 2990-
3004. https://doi.org/10.1080/01431161.2016.1192304

Talib, Z.R. and Laffta, S.J., 2024. Analysis of the Agricultural Drought Causes in Babylon
Province. Iragi Journal of Science, pp. 4667-4676. https://doi: 10.24996/ijs.2024.65.8.43

Wan, T.A.N.G., Jun, H.U., Zhang, H., Pan, W.U. and Hua, H.E., 2015. Kappa coefficient: a
popular measure of rater agreement. Shanghai archives of psychiatry, 27(1), 62.
https://doi.org/10.11919%2Fj.issn.1002-0829.215010

Wang, Q., Guan, Q., Lin, J., Luo, H., Tan, Z. and Ma, Y., 2021. Simulating land use/land cover
change in an arid region with the coupling models. Ecological Indicators, 122, 107231.
https://doi.org/10.1016/j.ecolind.2020.107231

Wang, S.W., Munkhnasan, L. and Lee, W.K., 2021. Land use and land cover change detection
and prediction in Bhutan's high-altitude city of Thimphu, using cellular automata and
Markov chain. Environmental Challenges, 2, 100017.
https://doi.org/10.1016/j.envc.2020.100017

Wang, S. and Zheng, X., 2023. Dominant transition probability: Combining CA-Markov model
to simulate land use change. Environment, Development and Sustainability, 25(7), pp.
6829-6847. https://doi.org/10.1007/s10668-022-02337-z .

Zhang, Z., Hu, B., Jiang, W. and Qiu, H., 2021. Identification and scenario prediction of degree
of wetland damage in Guangxi based on the CA-Markov model. Ecological Indicators,
127, 107764. https://doi.org/10.1016/j.ecolind.2021.107764

https://en.wikipedia.org/wiki/Babylon_Governorate



https://doi.org/10.1111/gcb.15109
https://doi.org/10.3390/ijgi7040154
https://doi.org/10.3390/su12093747
https://doi.org/10.1016/j.beproc.2018.01.004
https://doi.org/10.3389/fenvs.2020.00021
https://doi.org/10.1155/2021/6685045
https://doi.org/10.1080/01431161.2016.1192304
https://doi:%2010.24996/ijs.2024.65.8.43
https://doi.org/10.11919%2Fj.issn.1002-0829.215010
https://doi.org/10.1016/j.ecolind.2020.107231
https://doi.org/10.1016/j.envc.2020.100017
https://doi.org/10.1007/s10668-022-02337-z
https://doi.org/10.1016/j.ecolind.2021.107764
https://en.wikipedia.org/wiki/Babylon_Governorate

