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Babil Governorate has witnessed radical changes in land use and 

land cover (LULC) over the past few decades, driven by rapid 

population growth and economic development. Despite this, knowledge 

remains limited regarding land use patterns and the mechanisms of 

change driven by human activities. Therefore, there is an urgent need to 

study the transformations of LULC in Babil Governorate to determine 

the factors influencing these changes, and to predict their future 

trajectories. This study aims to assess LULC changes during the period 

1990-2020 and to predict the expected changes up to 2050 by analyzing 

land use and land cover data for 1990, 2000, 2010, and 2020. By 

applying the LULC transition matrix and the Markov model, the study 

could simulate the expected LULC patterns for the study area in the 

future. The study results show that the region will experience substantial 

changes in LULC during the period 2030-2050. Urban areas are 

expected to increase gradually, while bare land is expected to decline 

significantly. Water bodies are also expected to grow, and vegetation 

lands are expected to remain relatively stable. These changes reflect the 

intertwined effects of urban expansion, climate change, water inflows 

from neighboring countries, and shifts in land use patterns. The results 

indicate that current LULC trends will continue over the next three 

decades. This study can provide decision-makers with the necessary 

tools to develop sustainable land and water management policies. 
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المحاكاة المكانية للتغيرات المستقبلية في استخدام الأراضي والغطاء الأرضي لمحافظة 
 ماركوفلبابل باستخدام نموذج الخلية الآلية 

   2، رباب سعدون عبدون   * 1حيدر حميد جسوم 
 . ، العراق51002قسم الفيزياء، كلية العلوم، جامعة بابل، بابل، الحلة،  2،1

 

 معلومات الارشفة  الملخص

الأراضي شهدت محافظة بابل تغييرات جذرية في استخدامات الأراضي وتغطية  
LULC) )النمو السكاني السريع والتنمية  بدافع مدى العقود القليلة الماضية على

بأنماط  يتعلق  فيما  محدودة  المعرفة  تزال  لا  ذلك،  من  الرغم  على  الاقتصادية. 
بالأنشطة البشرية. لذلك، هناك حاجة    المدعمةاستخدام الأراضي وآليات التغيير  

في محافظة بابل وتحديد العوامل المؤثرة على هذه   LULCملحة لدراسة تحولات  
  LULCالتغيرات والتنبؤ بمساراتها المستقبلية. يهدف هذا البحث إلى تقييم تغييرات  

من خلال   2050والتنبؤ بالتغيرات المتوقعة حتى عام    2020-1990خلال الفترة  
  2010و  2000و  1990ل بيانات استخدامات الأراضي وتغطية الأرض لعام  تحلي 

انتقال  2020و مصفوفة  تطبيق  خلال  من   .LULC    ،ماركوف يمكن ونموذج 
المتوقعة لمنطقة الدراسة في المستقبل. أظهرت   LULCللدراسة محاكاة أنماط  

- 2030خلال الفترة    LULCنتائج الدراسة أن المنطقة ستشهد تغييرات كبيرة في  
. من المتوقع أن تزداد المناطق الحضرية تدريجياً، بينما من المتوقع أن  2050

بشكل كبير. ومن المتوقع أيضًا أن تنمو المسطحات   الجرداءتنخفض الأراضي  
المائية، ومن المتوقع أن تظل أراضي الغطاء النباتي مستقرة نسبيًا. تعكس هذه  
التغييرات الآثار المتداخلة للتوسع الحضري وتغير المناخ وتدفق المياه من البلدان  

أن إلى  النتائج  تشير  الأراضي.  استخدام  أنماط  وتحولات  الاتجاهات   المجاورة 
ستستمر على مدى العقود الثلاثة المقبلة. يمكن أن توفر هذه   LULCلـ    الحالية

الدراسة لصانعي القرار الأدوات اللازمة لتطوير سياسات مستدامة لإدارة الأراضي  
 . لمياهوا
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Introduction 
LULC refers to changes in land use and land cover resulting from human activities 

(Riggio et al., 2020). These modifications have seriously affected the ecological balance at 

different local (study area) and international levels. As a result, this matter has become a focus 

of the international community due to its impact on our planet (Anwar et al., 2022). As a 

solution to this issue, geospatial models and open-source geospatial data have proven to be 

powerful tools for monitoring and tracking the status and changes in land use and land cover. 

This approach can effectively support efforts to protect the environment and sustainably 

manage land (Rai et al., 2018). Due to the increase in income and population, cities and urban 

areas have experienced significant expansion, which is natural with increasing human activity. 
 Land use patterns in these areas are influenced by various factors (industrial, 

technological, globalization, economic, and administrative) (Fei et al., 2021). It is important to 

know that rapid urban expansion significantly impacts the economic conditions of cities. This 

widespread phenomenon, often resulting from poor urban planning, causes negative side effects 

such as deforestation, decreased agricultural land, and the conversion of pastures into built-up 
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areas (Feng et al., 2021). The forthcoming years will witness multiple and interconnected 

challenges in land use due to the expected increase in demand for goods and services, which 

will lead to the depletion of limited land resources (Popp et al., 2017). Therefore, making the 

right decisions about the environment and long-term sustainable development is conditional on 

the availability of accurate data on land use and land cover change. Consequently, this data is 

essential for evaluating studies and discussions on current global changes. Given the expected 

increase in demand for products and services, which puts increasing pressure on limited land 

resources, the world will face new and intertwined challenges in land use in the near future 

(Cuevas et al., 2016). 
This study aims to analyze the spatial distribution of land use and land cover types in 

Babil Governorate and to provide detailed information to support decision-making related to 

natural resource management. Additionally, the study aims to evaluate the efficiency of the 

Cellular Automata-Markov model in predicting future changes in land use. 
Related work 

A variety of spatial simulation models have been employed, including the conversion of 

land use and its effects on a model developed by Das et al. (2019) and the future land use 

simulation model proposed by Lin et al. (2020), to predict dynamic changes in land surface 

cover over time and space. 
Among the most prominent models that have received widespread attention in this field 

is the CA-Markov model, which combines the power of Markov chains in representing temporal 

changes with the flexibility of cellular automata in simulating spatial interactions, making it a 

powerful tool for understanding the dynamics of complex spatial changes (Wang et al. 2021). 

Furthermore, studies have shown that the CA-Markov model provides a powerful tool for 

analyzing the complex spatial changes and offers valuable insights to support decision-making 

in the field of spatial planning. For example, Ruben et al. (2020) and Kisamba and Li (2023) 

successfully used this model to predict land cover changes, and they proposed sustainable land 

use policies.  
In a previous study, Matlhodi et al. (2021) compared the performance of the Cellular 

Automata-Markov and GEOMOD models in predicting future land use changes in the Nepalese 

Fewa Lake watershed. Their results showed that the Cellular Automata-Markov model 

outperformed in simulating future scenarios. 
Liu et al. (2017) proposed a novel Future Land Use Simulation (FLUS) model to forecast 

changes in land use and land cover in the future. The model integrates top-down and bottom-

up approaches to accurately simulate the complex interactions between human activities and 

climate change. The FLUS model was tested on a Chinese case study and outperformed existing 

models in predicting future land use patterns under various scenarios. This innovative model 

provides valuable insights for sustainable urban planning and policymaking. 
Based on the promising results shown by the CA-Markov model in previous studies, we 

applied this model for the first time in Babil Governorate to assess current land use change 

patterns and to predict its future distribution until 2050. Thus, this study introduces a new 

scientific contribution in this field at the level of Babil Governorate.  A comprehensive study is 

conducted on historical LULC change data in Babil Governorate. Changes in LULC were 

assessed over different periods, and their causes were identified. Future land use in the study 

area is also projected. The results of this study are expected to enhance the sustainable use of 

natural resources in the study area. 
Study Area 

Babil Governorate is situated in the center of Iraq, south of the capital Baghdad, and is 

the cradle of ancient civilizations. It is the fifth-largest governorate in Iraq in terms of 
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population, with approximately two million inhabitants as of 2018  (Hashim et al., 2022). 

Geographically, it extends between longitudes 43° 58' 10" and 44° 38' 35" East, and latitudes 

32° 7' 25" and 33° 0' 35" North, covering an area of approximately 5119 km2 (Talib and Laffta, 

2024). It is bordered by Baghdad Governorate to the north, Wasit Governorate to the east, 

Karbala and Anbar Governorates to the west, and Najaf and Qadisiyah Governorates to the 

south (Talib and Laffta, 2024) (Fig. 1). 

Babil Governorate experiences a hot and arid continental climate with summer 

temperatures exceeding 50 °C. Despite these harsh climatic conditions, Babylon has managed 

to develop a thriving agricultural economy through an extensive network of irrigation canals 

that supply agricultural lands. This network contributes to the production of a variety of crops, 

including grains, vegetables, and fruits, making agriculture a cornerstone of the local economy 

(Hashim et al., 2022). 

Administratively, the governorate is divided into six districts: Hilla (the governorate 

center), Al-Mahawil, Al-Musayyib, Al-Hashimiyah, Al-Hamza Al-Gharbi, and Kothi (Hashim 

et al., 2022). 

Babil is renowned for its ancient historical sites dating back to the Sumerian and 

Babylonian civilizations, making it the most important tourist destinations in Iraq for tourists 

from all over the world. It is the place where visitors come to enjoy the beauty of its 

archaeological sites and to learn more about its ancient history. 

https://en.wikipedia.org/wiki/Babylon_Governorate(. 
 

 

Fig. 1. Geographical map illustrating the location of Babylon Governorate and its administrative divisions 

in the central part of Iraq 

Materials and Methods 

Opted method 

A comprehensive methodology integrating satellite image processing, land use 

classification, and Markov modeling is employed to predict future land use changes as 

illustrated in Fig. 2. 

 

https://en.wikipedia.org/wiki/Babylon_Governorate
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Fig. 2. Flow chart of the correction procedures. 

Landsat datasets 

A precise methodological framework is employed to analyze satellite imagery spanning 

multiple temporal periods. Key considerations encompassed the selection of cloud-free images, 

the assurance of high spatial resolution, and the maintenance of consistent acquisition dates 

(Marti et al., 2016). Subsequently, the images are projected using the Universal Transverse 

Mercator projection (UTM). Their geographic location is accurately determined using the 

World Geodetic System 1984 (WGS84) and the ellipsoid (Okiemute et al., 2018).  
Landsat 7 (+ETM) and Landsat 8 (OLI) datasets (Table 1) are carefully selected for the 

study, considering the criteria above, pertinent scientific references, and the common use of 

Landsat imagery in LULC studies. Land cover and land use dynamics are investigated using 

four Landsat satellite images with a 10-year time interval (Table 1). The Landsat scenes are 

obtained from the United States Geological Survey (USGS) Earth Explorer website 

(http://earthexplorer.usgs.gov/). 
Table 1: Remote sensing imagery used in this study. 

Path Row Landsat 7 (+ETM)  Landsat 8 (OLI) 

168 37 12 / July / 1990 1 / July / 2000 10 / July / 2010 13 / July / 2020 

168 38 12 / July / 1990 1 / July / 2000 10 / July / 2010 13 / July / 2020 

169 37    20 / July / 2020 

Image processing operations 

Initial image processing is carried out using ENVI 5.6 and ArcGIS desktop  software 

(Nath et al., 2022). This includes radiometric and atmospheric correction, as well as repairing 

distortions caused by the Landsat 7 scan line corrector failure. To address missing data 

(approximately 22% in the 2010 image), the Nearest Neighbor Interpolation technique is 

employed. Spatially consistent spectral bands from Landsat 7 and 8 are merged to enhance 

spectral information. Subsequently, the images are mosaicked and clipped to the study area. 

http://earthexplorer.usgs.gov/
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Google Earth imagery is used as a reference to establish ground control points for accurate 

georeferencing of the Landsat images. To ensure accurate classification, a comprehensive 

training dataset is created. For the years 1990, 2000, 2010, and 2020, training sites are identified 

using on-screen digitization techniques on Landsat imagery and Google Earth Pro. To minimize 

the impact of mixed pixels, homogeneous polygons are chosen as training sites. A stratified 

random sampling technique is employed to generate 250 sample points per class from these 

polygons. Additionally, independent validation samples (approximately 25 points per class) are 

collected to assess classification accuracy. 

A maximum likelihood classifier is employed to categorize the pixels into various LULC 

classes. The unique spectral signatures of each LULC class are compared on the maps to 

identify the specific land cover types in different areas of Babil Governorate. The classified 

LULC classes are then compared to the corresponding types observed in Google Earth Pro 

imagery. The classified images are converted from TIF to ASCII format using the “Raster to 

ASCII” command for input into IDRISI Selva. The CA-Markov model is applied to analyze 

historical LULC changes and to predict future trends. 
Assessment of the accuracy of classification 

Evaluating the accuracy and reliability of image classification methodologies is a crucial 

stage in the research process (Lu and Lu, 2023). To guarantee reliability and discrimination, it 

is advised that the accuracy level for LULC classification exceeds 90% as per previous studies 

(Junaid et al., 2023). Studies have emphasized the importance of validating the model and its 

accuracy in conducting a reliable LULC survey (Ruuska et al., 2018). This study relied on 

Kappa statistics and total accuracy to evaluate the effectiveness of classification maps. Google 

Earth images and satellite images are used to verify the results. An error matrix combined the 

land use map, classified land cover, and ground reference information. Several metrics were 

identified, such as product accuracy, user accuracy, overall accuracy, and Kappa coefficient 

(Foody, 2020). The proportion of correctly classified pixels in the confusion matrix determined 

overall accuracy, and the Kappa index indicated the degree of agreement between the classified 

map and the reference data used (Twele et al., 2016). The following equations are used to 

calculate these two measures: 

Overall accuracy = 
𝑫

𝑻
 *100%                    (1) 

where: D represents the total number of correct calls as summed along the major diagonal, 

and T represents the total number of correct calls in the error matrix. While the Kappa index 

(𝒌̂) is calculated as follows: 

𝒌̂ =
𝑻 ∑ 𝒀𝒏𝒏− ∑ (𝒀𝒏+∗ 𝒀+𝒏)𝒓

𝒏=𝟏
𝒓
𝒏=𝟏

𝑻𝟐− ∑ (𝒀𝒏+∗ 𝒀+𝒏)𝒓
𝒏=𝟏

                     (2) 

where: T represents the total number of cells in the error matrix, r represents the number 

of rows in the matrix, 𝑌𝑛𝑛 represents the total number of correct cells in a class (i.e., value in 

row n and column n ), 𝑌𝑛+ represents the total for row n, 𝑌+𝑛 represents the total for column n. 
Kappa indices are an essential tool for evaluating the accuracy of maps as they provide 

information about how closely the results match. If the kappa value is greater than or equal to 

75%, the maps are highly consistent; if it is between 50% and 75%, the agreement is average; 

if it is less than or equal to 50%, it is poor (El Baroudy, 2016; Wan et al., 2015). As a result, to 

assess the CA-Markov model's ability to accurately simulate future land use and land cover 

conditions, Wang and Zheng (2023), after simulating land use and land cover for 2020 using 

classified images from 1990 and 2020, validated the CA-Markov model. Two map agreements 

(actual and simulated for 2020) were evaluated using the Kappa index of agreement (KIA) 

(Mathanraj et al., 2021), such as no information Kappa (Kno), location Kappa (Klocation), and 

standard Kappa (Kstandard), using the CROSSTAB module in IDRISI Selva software. 
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Additionally, the simulated and actual areas of each land use and land cover class are compared 

using the validate module. Therefore, the Kappa index is a suitable indicator; thus, land use and 

land cover can be predicted for 2030, 2040, and 2050. 
Methods 

Land use and land cover change detection 

Analyzing Land Use and Land Cover Change (LULCC) is essential to identify the 

particular changes in different land use categories (Spruce et al., 2020). The land cover change 

detection map is used to assess and examine the temporal changes in land use and land cover 

within the defined area. The equation mentioned below is applied to estimate the size of the 

changes that occurred in each category: 

𝐶𝑖 = 𝑅𝑖 − 𝐵𝑖                         (3) 
where: 𝐶𝑖 represents the change in extent for the class 𝑖, 𝐵𝑖  denotes the base image,  and 

𝑅𝑖 is the most recent image.  

The percentage change for each LULC class is calculated using the following equation: 

𝑃𝑖 =
𝑅𝑖−𝐵𝑖

𝐵𝑖
                                     (4) 

where: 𝑃𝑖 denotes the percentage shift for the class 𝑖, and 𝐵𝑖  denotes the base image, and 

𝑅𝑖 is the most recent image. 
Land Use and Land Cover (LULC) Change Prediction Using Cellular Automata-

Markov Model 

The Cellular Automata-Markov (CA-Markov) model is a methodology that combines 

cellular automata and Markov chains. This approach aims to predict future trends and 

characteristics of LULC change. The cellular automata model looks at the uncertainty that 

comes from several sources, such as the relationships between model components, the design 

of the model, and the quality of the data used as input (Palmate et al., 2022). On the other hand, 

the CA-Markov approach concentrates on the local interactions of cells, considering their 

behavior in space and time. This method benefits from suitable computational capabilities for 

dynamic simulation and visualization. 

One of the most critical applications of the CA-Markov  model involves analyzing the 

transition probabilities among different LULC classes across various periods (Nouri et al., 

2019). By examining these transition probabilities, insights can be gained into the driving forces 

behind land use changes and their potential future trajectories. This knowledge facilitates 

predicting LULC characteristics and their potential environmental, natural resource, and 

landscape implications (Deafalla, 2022). Leveraging the strengths of both Markov models and 

cellular automata, the CA-Markov model has proven effective in simulating land use change in 

previous studies (Abdelkarim, 2023). This model identifies potential spatial distributions of 

transitions (Wang et al., 2021; Rimal et al., 2018). 
The following stages are implemented throughout the process: the base map and LULC 

maps for the  period (1990-2020) at ten-year intervals, in addition to transition probability 

images used to create LULC maps for 1990, 2000, 2010, and 2020. Using IDRISI Terrset 

software, the transition probability and prospective transition images are processed. 

Subsequently, a potential transition map for 2000–2010 is established to duplicate the land use 

land cover map for 2020, and the Markov transition probability estimation technique is used to 

model land use land cover maps for the  period (2030-2050) at ten-year intervals based on 2010 -
2020. The CA-Markov model utilizes the time factor to identify patterns and factors that 

contribute to future modification : 
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𝑆(𝑡, 𝑡 + 1) = 𝑓( 𝑆(𝑡), 𝑛)                     (5) 

where: 𝑛 operates, representing the occurrence rate at any given moment, and 𝑆(𝑡 + 1) 

means the system status at the instant of (𝑡, 𝑡 + 1).  

The CA-Markov model is frequently employed to  anticipate future stability and change 

in LULC in a particular area, as well as to conduct ecological modeling and LULC monitoring. 

The following formula is employed to forecast future changes in LULC: 
𝑆(𝑡, 𝑡 + 1) = 𝑆(𝑡) ∗ 𝑃𝑖𝑗                         (6) 

where: 𝑆(𝑡 + 1) is the system status at the time 𝑡 + 1 and, 𝑆(𝑡) is the system status at 

time 𝑡,  𝑃𝑖𝑗 is the transition probability matrix in a state, which is defined as: 

= ||𝑃𝑖𝑗|| = || 
𝑃1,1 𝑃1,2 𝑃1, 𝑛
𝑃2,1 𝑃2,2 𝑃2, 𝑛
𝑃𝑛, 1 𝑃𝑛, 2 𝑃𝑛, 𝑛

|| ( 0 ≤  𝑃𝑖𝑗 ≤ 1)             (7) 

where 𝑃 represents the transition probability, 𝑃𝑖𝑗 represents the probability that a 

particular state will persist at any given time, and 𝑃𝑛 represents the probability that it will transit 

from one state to another in the future.  

A high transition probability is closer to (1) than a low transition  probability  (Nath et al., 

2023). A Markov chain analysis is conducted to generate a LULC transition matrix quantifying 

the probability of land cover changes between 1990-2000, 2000-2010, 2010-2020, and 1990-

2020. This transition matrix served as a foundation for projecting future LULC dynamics. 

However, the Markov chain model exhibits limitations in capturing spatial dependencies, 

needing a mechanistic explanation for change processes and disregarding the spatial 

distribution of LULC, which are critical factors in simulating land cover patterns (Pandey et 

al., 2021). 

The cellular automata model is widely employed for the prediction of LULC due to its 

ability to simulate and regulate the dynamics of intricate spatial systems. A CA model 

comprises cells, cell space, neighborhood, time, and rules. It predicts new LULC patterns by 

considering the previous states of neighboring cells (Castro et al., 2022). The influence of a 

neighbor on a cell's change is determined by their spatial proximity, with closer neighbors 

exerting a more significant impact. These weights are combined with transition probabilities to 

estimate the likelihood of changes in neighboring cells, preventing solely random predictions. 

Integrating Markov chain principles, the CA model incorporates the preceding LULC state and 

utilizes the conditions of neighboring cells to define transition rules (Koko et al., 2020). The 

model's suitability for dynamic modelling within Geographic Information Systems and remote 

sensing environments is attributed to its analytical capabilities (Chuvieco, 2020). However, the 

CA model necessitates refinement to establish clear transition rules and modelling frameworks. 

As a result, integrating it with dynamic  and other empirical models, like the Cellular Automata-

Markov model, is essential for conducting a comprehensive analysis of LULC (Lacher et al., 

2023). 
The procedures for running the CA-Markov model in the IDRISI-Selva program involve 

the following steps: The first stage entailed the execution of two models using land-cover maps 

for the periods 1990-2000, 2000-2010, 2010-2020, and 1990-2020. This process generated a 

transition probability matrix and a transition area matrix. The transition probability matrix is 

determined through cross-tabulation of multiple pairs of temporal images. Over a 

predetermined period, this matrix exhibits the likelihood of each land cover class transitioning 

to another. The transition area matrix contains the anticipated number of pixels that may transit 

from one land cover class to another over a specified number of time units. Simultaneously, the 

conditional probability map denotes the probability that each pixel of a land cover class will be 

situated at a site with a specific class after a particular time  (Aneesha Satya et al., 2020). 
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Transition probability matrices for periods 1 and 2 are generated by employing a variety of 

historical land use scenarios for the periods 1990-2000 and 2000-2020. The second stage 

entailed using a standard 5x5 adjacency filter to ascertain the perimeter of each cell. The 

scenario-based approach is implemented to simulate the prospective land use pattern during the 

final stage. LULC maps classified for 1990 and 2000 are employed to calibrate and refine the 

Markov algorithm. Time 1 is utilized in 1990, while time 2 is utilized in 2000. Transition 

probabilities between time one and time two are employed to simulate the land use pattern in 

2020. The cellular automata Markov model is validated to assess the accuracy of its predictions 

for the year 2020. This process involves a statistical method to differentiate between locational 

and quantitative errors by comparing two images  (Zhang et al., 2021). The Kappa statistic index 

is employed to ascertain the degree of concordance between the actual and forecast 2020 land 

cover maps. An acceptable Kappa index is obtained, indicating reliable land use modelling and 

prediction. Subsequently, the classified land cover map of 2020 is utilized as a baseline for 

predicting potential land use in 2030, 2040, and 2050. 
The Markov chain model determines the change in land area from the base year to the 

projected year. This model generates prospective probabilities of land cover and land use and a 

more comprehensive understanding of how to adapt factors that influence land cover and land 

use change, which benefits decision-makers  (Tadese et al., 2021). This model clarifies the 

dynamics of land cover and land use, which is crucial for developing and planning various land 

use policies that will improve the management of appropriate land cover and land use (Getu 

and Bhat 2022). The model effectively anticipates future land use shifts by analyzing the 

underlying causes of land use alterations, the suitability of different land use combinations, and 

other influential elements like transportation infrastructure, waterways, and urban centers. This 

model is particularly effective in simulating land use patterns in dispersed regions. In addition, 

the research has demonstrated that the CA-Markov model is more effective than other models 

in accurately simulating land use patterns and landscapes including the Artificial Neural 

Networks-Cellular Automata (ANN-CA) model, the Future Land Use Simulation (FLUS) 

model, and the Conversion of Land Use and its Effects (CLUE) model (Nath et al., 2020; and 

Wang et al., 2021). 

Model Calibration and Validation 

In the absence of accurate evaluation data, it becomes necessary to make future 

adjustments to the procedures for assessing prediction accuracy, model calibration, and 

validation to improve the modeling process. In a study conducted by Nath et al. (2020), the chi-

square test (χ²) was used to verify the accuracy of estimated land use images compared to real-

world data for 2020. However, this comparison alone may not be sufficient to accurately assess 

the spatial distribution of land use classes in the study area.  Therefore, researchers resorted to 

using the Kappa index, a more accurate statistical tool, to handle this issue (Debnath et al., 

2023). This technique involved calculating three types of Kappa index: location Kappa (K  
location), quantity Kappa (Kquantity), and no information Kappa (K  no), to distinguish between 

spatial and quantitative errors in the predicted and actual images. These indices are used to 

evaluate the accuracy of the CA-Markov model, where higher values show a higher level of 

concordance between the model and reality. Kappa index values range from 0 to 1, as values 

closer to 1 indicate perfect agreement. According to Beroho and colleagues (2024) (Beroho et 

al., 2023), a Kappa value of less than 0.5 indicates poor agreement, while a value of 0.75 

indicates moderate agreement, and a value greater than 0.75 indicates strong agreement.  
Results and Discussion 

Changes in LULC categories in Babil Governorate 

The study area exhibited four LULC classes, with an assessment revealing historical 

transformations and change patterns for each. The main LULC types in the study area include 

urban lands, bare soil land, water bodies, and vegetation lands, and the total quantity has 
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actually changed over the period 1990-2020. However, an evaluation of the transformations 

between these land cover categories showed a significant shift between them, as shown in Fig. 

3 and Table 2. Babil Governorate faced several challenges, including urban expansion, loss of 

vegetation lands, and a decrease in water bodies. 

 

Fig. 3. LULC Changes in the Babil Governorate for 1990, 2000, 2010, and 2020. 

Table 2: Distribution of LULC in Babil Governorate in 1990, 2000, 2010, and 2020. 

Classes 
1990 2000 2010 2020 

Area (km2) Area % Area (km2) Area % Area (km2) Area % Area (km2) Area % 

Urban lands 921.8394 17.2770 1168.7976 21.9054 1160.6328 21.7524 1638.1863 30.7026 

Bare soil lands 3034.5714 56.8735 3160.9935 59.2429 2525.7564 47.3373 2321.6850 43.5127 

Water bodies 82.3518 1.5434 32.7924 0.6146 73.9260 1.3855 161.1567 3.0204 

Vegetation lands 1296.8910 24.3061 973.0701 18.2371 1575.3384 29.5248 1214.6256 22.7643 

Total 5335.6536 100 5335.6536 100 5335.6536 100 5335.6536 100 

Table 2 presents data on land cover and land use in the region between 1990 and 2020, 

showing a significant increase in the area of urban land from 921.8394 km² to 1638.1863 km², 

attributed to population growth and urban expansion. Conversely, the area of bare soil land 

experienced a significant decrease from 3034.5714 km² to 2321.6850 km², as a result of 

conversion to other uses such as agriculture or construction. The area of water bodies also 

experienced fluctuations during the study period, depending on the volume of water imports 

from neighboring countries for the Euphrates River, as well as monthly releases from the 

governorate's water allocation and climate changes. The areas of vegetation land witnessed 

noticeable fluctuations between increases and decreases, mainly due to the expansion plans for 

crop cultivation implemented by the concerned authorities.  

Overall, the data show significant shifts in land use between 1990 and 2020, represented 

by an expansion of urban and vegetation areas at the expense of a decrease in the area of bare 

soil land, reflecting population growth, urban expansion, and an increase in marketing plans for 

agricultural crop cultivation. 
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Cross-Tabulation Matrix Results 

Based on the validation using Kappa indices, the CA-Markov model is deemed suitable 

for simulating the land cover and land use map for 2050 using transition probabilities from 1990 

to 2020 and the 2020 class map as a baseline. Therefore, the model is deemed suitable for this 

application. The metrics are determined by employing the subsequent equations (Gasirabo et 

al., 2023): 

𝐾𝑛𝑜 =
𝐺(𝑣) 𝐻(𝑛)

𝑆(𝑠)−𝐻(𝑛)
                                (8) 

𝐾𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =
𝐺(𝑣) 𝐻(𝑛)

𝑆(𝑣) − 𝐻(𝑣)
                        (9) 

𝐾𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 =
𝐺(𝑣) 𝐻(𝑛)

𝑆(𝑠)− 𝐻(𝑣)
                       (10) 

where: 𝐺(𝑣), 𝐻(𝑣), and 𝑆(𝑣) provide moderate grid cell-level information, while 𝐻(𝑣), 𝑆(𝑣)  
and 𝑆(𝑠) offer precise grid cell-level information across the topography. 

An assessment is implemented to identify the components of agreement or disagreement 

(Table 3), and these reasons were categorized into two main classes: spatial distribution errors 

(0.1181) and quantity errors (0.0520). Thus, the results suggest that the primary cause of the 

discrepancy between the recorded and actual data was spatial distribution errors rather than 

quantity issues (refer to Fig. 4). Fig. 4 shows the simulation results. The results show a good 

similarity between the actual LULC of Babil Governorate in 2020 and the simulated land use 

and land cover. The model's performance in forecasting LULCCs was verified by simulating 

land use and land cover for 2020, utilizing transition probabilities  for the period  1990-2000. 

Subsequently, the simulated results were compared to classified land use and land cover data 

for 2020, with differences in Kappa values employed as an accuracy measure. 
The simulation analysis demonstrated a high level of agreement among the results, with 

Kappa indices of 0.79 for both Kno, and Klocation, and 0.72 for Kstandard, as shown in Table 4. This 

indicates the reliability and effectiveness of the model in predicting future land cover and land 

use in the biosphere. Furthermore, visual inspection reveals a relatively close match between 

the land cover and land use classes in the simulated data and the classified data for 2020. These 

findings suggest that the modeling outcomes are reliable and that the broad patterns of modeled 

land cover and land use closely align with real-world patterns. 
Table 3: Validation assessment determines levels of agreement and disagreement between the two images. 

Agreement / Disagree Value  Value % 

Agreement Chance  0.2000 20.00 

Agreement Quantity 0.1853 18.53 

Agreement Strata 0.0000 00.00 

Agreement Grid cell 0.4445 44.45 

Disagree Grid cell 0.1181 11.81 

Disagree Strata 0.0000 00.00 

Disagree Quantity 0.0520 5.20 

Table 4: Validate the simulated 2020 Land Use Land Cover image. 

Coefficient  Value  Value % 

𝐾𝑛𝑜 0.79 79 % 

𝐾𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 0.79 79 % 

𝐾𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 0.72 72 % 
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Fig. 4. Classified and simulated LULC maps for 2020: modelled and annotated. 

LULCC Prediction Results in the Coming 2030, 2040 and 2050 years 

A transition probability matrix is calculated to model the likelihood of land cover changes 

between 1990 and 2020 (Table 5). This matrix is then used to predict future land cover and land 

use patterns in the years 2030, 2040, and 2050. 
Table 5. Transition probability matrix over the period 1990–2020. 

1990 

2020 

Urban lands Bare soil lands Water bodies Vegetation lands 

Urban lands 0.4517 0.3515 0.0165 0.1804 

Bare soil lands 0.2805 0.5894 0.0352 0.095 

Water bodies 0.0929 0.1088 0.5885 0.2098 

Vegetation lands 0.3631 0.1606 0.0203 0.4559 

The presented matrix shows the probability of land use changes between 1990 and 2020. 

The matrix indicates an increased probability of other land use types transforming into urban 

areas between 1990 and 2020. This trend is driven by factors such as population growth, urban 

expansion, and economic transformation. The matrix shows a probability of urban land 

transforming into bare soil land (0.3515) due to the security instability and military operations 

between 2003 and 2017 in the governorate. The matrix shows a probability of bare soil land 

transforming into urban land (0.2805). This may reflect changes in the direction of urban 

expansion due to the unstable security situation. The matrix indicates a low probability of water 

bodies transforming into other land-use types. This may be due to the importance of water 

bodies for ecosystems and the existence of laws to protect them. The matrix shows a probability 

of vegetation lands transforming into urban lands (0.3631) due to population growth and urban 

expansion. These changes are taken into account when forecasting future transformations in 

2030, 2040, and 2050. Based on the ongoing changes, changes in LULC are designed, and a 

change map for the years 2030, 2040, and 2050 is obtained. From Fig. 6, it can be observed that 

the changes will occur mainly in water bodies and barren lands, and how their extent will 

expand. The study predicts a gradual increase in urban areas, a sharp decline in barren lands, 

and a significant growth in water bodies, with relative stability of green areas, reflecting the 

impacts of urban expansion, climate change, and changing land use patterns. In 2030, the area 

of urban land will reach approximately 0.2231847 square kilometers, increasing to 1875.1473 
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square kilometers in 2040, and then decreasing slightly to 2793.1860 square kilometers in 2050. 

These results indicate a trend towards urban expansion, which is common in many areas due to 

population growth and economic development. In contrast to urban areas, barren lands are 

expected to experience a significant decrease in their area. In 2030, the area of barren land will 

be approximately 2156.8860 square kilometers, decreasing to 2089.2600 square kilometers in 

2040, and then decreasing further to 1810.1160 square kilometers in 2050. This decrease may 

be attributed to several factors, such as urban expansion or changing land use for other purposes. 

Regarding water bodies, they are expected to experience a significant increase in their area. In 

2030, the area of water bodies will be approximately 228.1797 square kilometers, increasing to 

259.7607 square kilometers in 2040, and then experiencing a significant jump to 554.4297 

square kilometers in 2050. This significant increase may be the result of the construction of 

dams and reservoirs, changes in rainfall patterns, or other factors affecting the water cycle. On 

the other hand, green areas are expected to experience relatively minor changes during the 

projected period. In 2030, the area of land covered by vegetation will be approximately 

1103.5656 square kilometers, increasing slightly to 1111.4856 square kilometers in 2040, and 

then decreasing slightly to 1110.8286 square kilometers in 2050. These results indicate a 

relative stability in the area of green land with some minor fluctuations (Fig. 5 and  Table 6). 

 

Fig. 5. Projected LULC for 2030, 2040, and 2050. 

Table 6. Statistical distribution of the modeled LULC in 2020, 2030, 2034, and 2050 . 

Classes 
2020 2030 2040 2050  

Area (km2) Area % Area (km2) Area % Area (km2) Area % Area (km2) Area % 

Urban lands 1638.1863 30.7026 1847.0223 34.6166 1875.1473 35.1437 1860.2793 34.8651 

Bare soil lands 2321.6850 43.5127 2156.8860 40.4240 2089.2600 39.1566 1810.1160 33.9249 

Water bodies 161.1567 3.0204 228.1797 4.2765 259.7607 4.8684 554.4297 10.3910 

Vegetation lands 1214.6256 22.7643 1103.5656 20.6829 1111.4856 20.8313 1110.8286 20.8190 

Total 5335.6536 100 5335.6536 100 5335.6536 100 5335.6536 100 

The results indicate the likelihood of significant transformations in Land Use and Land 

Cover (LULC) patterns within the study area as demonstrated by the Cellular Automata-

Markov (CA-Markov) model. This model has proven highly efficient in simulating 

spatiotemporal changes in LULC patterns, confirming the area's exposure to varying levels of 
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dynamics and change. Therefore, strategic land use planning and water resource management 

are of paramount importance under these circumstances. Studying how land is used and how it 

has changed in the past, along with the reasons for these changes, is crucial for predicting how 

land will be used in the future. Science supports this hypothesis, and this is precisely the 

approach taken in this study (Keshtkar and Voigt, 2016). Therefore, documenting these 

transformations is essential to support future decision-making. However, given this study's 

focus on direct driving factors, uncertainty about future LULC patterns necessitates the 

integration of additional factors into the modeling process, such as population changes, changes 

in the climate, natural disasters, and the state of the economy. This would contribute to a deeper 

understanding of the complex LULC change processes and thus the development of more 

comprehensive and effective management strategies. 

Conclusion 

This study aims to assess and predict future changes in Land Use and Land Cover (LULC) 

in Babil Governorate. In order to achieve this goal, a hybrid-integrated model combining 

cellular automata and Markov chains is employed. GIS techniques and multi-temporal satellite 

data are used to monitor changes in LULC from 1990 to 2020.  
By reviewing the transformation of LULC changes in Babil Governorate from 1990 to 

2020, it reveals a significant increase in urban area, primarily due to population growth and 

urban expansion. Conversely, barren lands experienced a noticeable decline as they were 

converted to other uses such as agriculture and construction. Water bodies, on the other hand, 

exhibited fluctuations in their area during the study period, influenced by climate changes and 

water imports from neighboring countries. Additionally, the area of green lands increased due 

to the rise in marketing plans for crops. Overall, these results demonstrate substantial 

transformations in land use within the governorate, with urban and green areas expanding at the 

expense of barren lands, reflecting the demographic, economic, and environmental changes 

experienced by the governorate.  

The study divides the LULC maps into four primary classes: urban areas, barren lands, 

water bodies, and green areas. This detailed classification enabled a comprehensive 

understanding of the spatial distribution of different land use types in the governorate, 

facilitating the prediction of future scenarios. The accuracy of the simulated LULC map for 

2020 is assessed using the Kappa index, and the evaluation results show agreement with the 

map extracted from satellite images, confirming the efficiency of the model used in the 

simulation. The analysis reveals that the factors influencing LULC changes vary with the type 

of cover and evolve.  
The advanced CA-Markov model is used to simulate LULC patterns in the governorate 

until 2050. The simulation results demonstrate the model's ability to generate accurate future 

LULC scenarios, indicating its high efficiency in this field. Despite the promising results 

obtained by the study, it is essential to emphasize the importance of integrating the latest local 

population statistics into future simulation models. This is because population growth is a 

significant factor influencing land use changes, and neglecting it could reduce the accuracy of 

predictions. Therefore, future studies should focus on analyzing the complex relationship 

between population growth and LULC changes for a more comprehensive understanding of 

long-term environmental change processes and their impact on the sustainability of natural 

resources. 
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