

Sedimentological Study and Age Determination of the Shiranish Formation in Perat Anticline, Northern Iraq

Mohammed W. Al-Abbas ^{1*} , Omar A. Al-Badrani ² , Majid M. Al-Mutwali ³ , Zaid A. Malak ⁴

¹College of Environmental Sciences, University of Mosul, Iraq.

^{2,4} Department of Geology and Petroleum, College of Science, University of Mosul, Mosul, Iraq.

³ Collage of Petroleum and Mining Engineering, University of Mosul, Iraq.

Article information

Received: 23- Nov -2024

Revised: 30 -Dec -2024

Accepted: 19- Feb -2025

Available online: 01- Jan -2026

Keywords:

Shiranish Fn,
Nannofossils,
Foraminifera,
Perat,
Iraq,

Correspondence:

Name: Mohammed W. Al-Abbas

Email:

mws3000@uomosul.edu.iq

ABSTRACT

A sedimentological and nannofossil biostratigraphical study of the Shiranish Formation focuses on an exposed section of the Perat anticline's northern limb. The formation consists of limestone, marl, and marly limestone. It produces a diverse range of calcareous nannofossils, planktic foraminiferal fauna, and some bioclasts. The calcareous nannofossil's stratigraphic distribution allows for the identification of three distinct biozones. These are *Uniplanarius trifidus* Interval zone (cc22), *Tranolithus phacelosus* Interval zone (Part) (cc23), and *Reinhardites levis* Interval zone (cc24), which indicate that the age of the studied Shiranish Formation in Perat anticline is estimated to span from Late Campanian to Early Maastrichtian. On the other hand, the studied section is composed of Globular Planktic Foraminiferal lime wackestone microfacies (Sh1), Keeled Planktic Foraminiferal lime wackestone microfacies (Sh2), Bioclastic lime wackestone microfacies (Sh3), Argillaceous Planktic Foraminiferal lime packstone microfacies (Sh4), and Marl lithofacies (Sh5). The formation's depositional habitats extend from the middle shelf to the upper bathyal based on the distinctive characteristics of these facies.

DOI: [10.33899/injes.v26i1.60219](https://doi.org/10.33899/injes.v26i1.60219), ©Authors, 2026, College of Science, University of Mosul.

This is an open-access article under the CC BY 4.0 license (<http://creativecommons.org/licenses/by/4.0/>).

دراسة رسوبية وتحديد عمر تكوين شرانش في طية بيرات المحدبة، شمالي العراق

محمد وليد العباسi¹ *¹ ، عمر احمد البدراني² ، ماجد مجدي المتولي³ ، زيد عبدالوهاب ملك⁴

¹ كلية العلوم البيئية، جامعة الموصل، الموصل، العراق.

² قسم علوم الأرض والنفط، كلية العلوم، جامعة الموصل، الموصل، العراق.

³ كلية هندسة النفط والتعدين، جامعة الموصل، الموصل، العراق.

الملخص

اجريت دراسة رسوبية وطبقية حياتية لمقطع سطحي من تكوين شرانش الذي يقع ضمن الطرف الشمالي من طية بيرات المحدبة. تتألف صخارة التكوين في منطقة الدراسة من طبقات الحجر الجيري والحجر الجيري المارلي وصخور المارل، والتي امتازت بمحتوها الجيد من متحجرات النانو الكلسية وحشود الفورامينيفرا الطاقية مع القليل من حطام الاصداف. وقد افرزت دراسة الطبقية الحياتية لمتحجرات النانو تشخيص ثلاثة انطقة حياتية وهي: *Uniplanarius trifidus* Interval zone (cc22), *Tranolithus phacelosus* Interval zone (Part) (cc23), *Reinhardites levius* Interval zone (cc24). الانطقة مع الانطقة العالمية والمسجلة في مناطق متفرقة، تم تحديد عمر التكوين بالكامباني المتأخر-الماستريخي المبكر. من جهة أخرى فقد قسمت صخور التكوين الى خمسة سحنات رسوبية وهي: سحنة الحجر الجيري الواكي الحاملة لمتحجرات الفورامينيفرا الطاقية ذات الحجرات الكروية (Sh1) وسحنة الحجر الجيري الواكي الحاملة لمتحجرات الفورامينيفرا الطاقية ذات الجؤؤ (Sh2) وسحنة الحجر الجيري الواكي الحاملة لحطام الاحياء (Sh3) وسحنة الحجر الجيري-الطيني الواكي الحاملة لمتحجرات الفورامينيفرا الطاقية (Sh4) والسحنة الصخارية (Sh5). هذه السحنات قد عكست صفات ومحظيات البيئة الترسيبية للمارل. للتكوين في منطقة الدراسة والتي امتدت من الرصيف الأوسط - الباثال الأعلى.

معلومات الارشفة

تاريخ الاستلام: 23- نوفمبر - 2024

تاريخ المراجعة: 30- ديسمبر - 2024

تاريخ القبول: 19- فبراير - 2025

تاريخ النشر الالكتروني: 01- يناير - 2026

الكلمات المفتاحية:

تكوين شرانش،

النانو،

الفورامينيفرا،

بيرات،

العراق،

المراسلة:

الاسم: محمد وليد العباسi

Email: mws3000@uomosul.edu.iq

DOI: [10.33899/injes.v26i1.60219](https://doi.org/10.33899/injes.v26i1.60219), ©Authors, 2026, College of Science, University of Mosul.
This is an open-access article under the CC BY 4.0 license (<http://creativecommons.org/licenses/by/4.0/>).

Introduction

Around the village of Shiranish Islam, which is located 17 kilometers northeast of Zakho City, (Henson 1940; in Bellen et al., 1959) first described the Shiranish Formation. Within the type section of the formation, there are two units: the upper unit (99 m) is composed of blue marl, while the bottom one (128 m) is thinly bedded with blue limestone. However, Al-Qayim et al. (1986) separated the type section into three parts, where the marly- and shaly-limestone make up the lower part (65 m), the sandstone and limestone make up the middle part (20 m), and the bluish marly shale makes up the upper part (100 m). It is reported that the formation environment is located far from the shore in a deep, open ocean environment. Al-Badrani (2001) examined the Ammonites of the lower Shiranish Formation in the Sinjar area and concluded that the depositional environment of the formation represents the upper continental slope. According to the examination of microfacies, Al-Atroshi (2007) deduced that the upper-middle bathyal and outer shelf environments are the depositional settings of the Shiranish Formation in the Duhok region. Furthermore, the age of the formation in the same area (Duhok) was determined to be Late Campanian-Maastrichtian (Al-Mutwali and Al-Juboury, 2005; Bamarni, 2010) through their studies of the foraminifera and biostratigraphy of the formation. Alrashedi (2013) used the study of planktic foraminifera to examine the biostratigraphy of the Shiranish Formation on the southern limb of the Perat anticline within the Bekhma area. He concluded

that the formation extends from the Late Campanian–Early Late Maastrichtian period. Finally, the depositional habitat of the Shiranish Formation, which is middle Campanian in age, ranges from the outer shelf to the upper bathyal according to research done by Al-Dulaimi et al. (2023) on the litho- and biostratigraphy of the Shiranish Formation in the Diana area.

Given the lack of research on the studied formation at the northern limb of Perat anticline, this study goals to identify the fossil species of calcareous nannofossil, to determine their biostratigraphic zones for age determination, and to conclude the paleoenvironmental context based on facies analysis.

Studied Section

Location: It is located near the Bekhma Dam tunnel on the northern limb of the Perat anticline to the southwest of the residential complex (Fig. 1). Within the Unstable Shelf's High Folded Zone, the section's midpoint is located at latitude ($36^{\circ} 42' 00''$) and longitude ($44^{\circ} 17' 00''$).

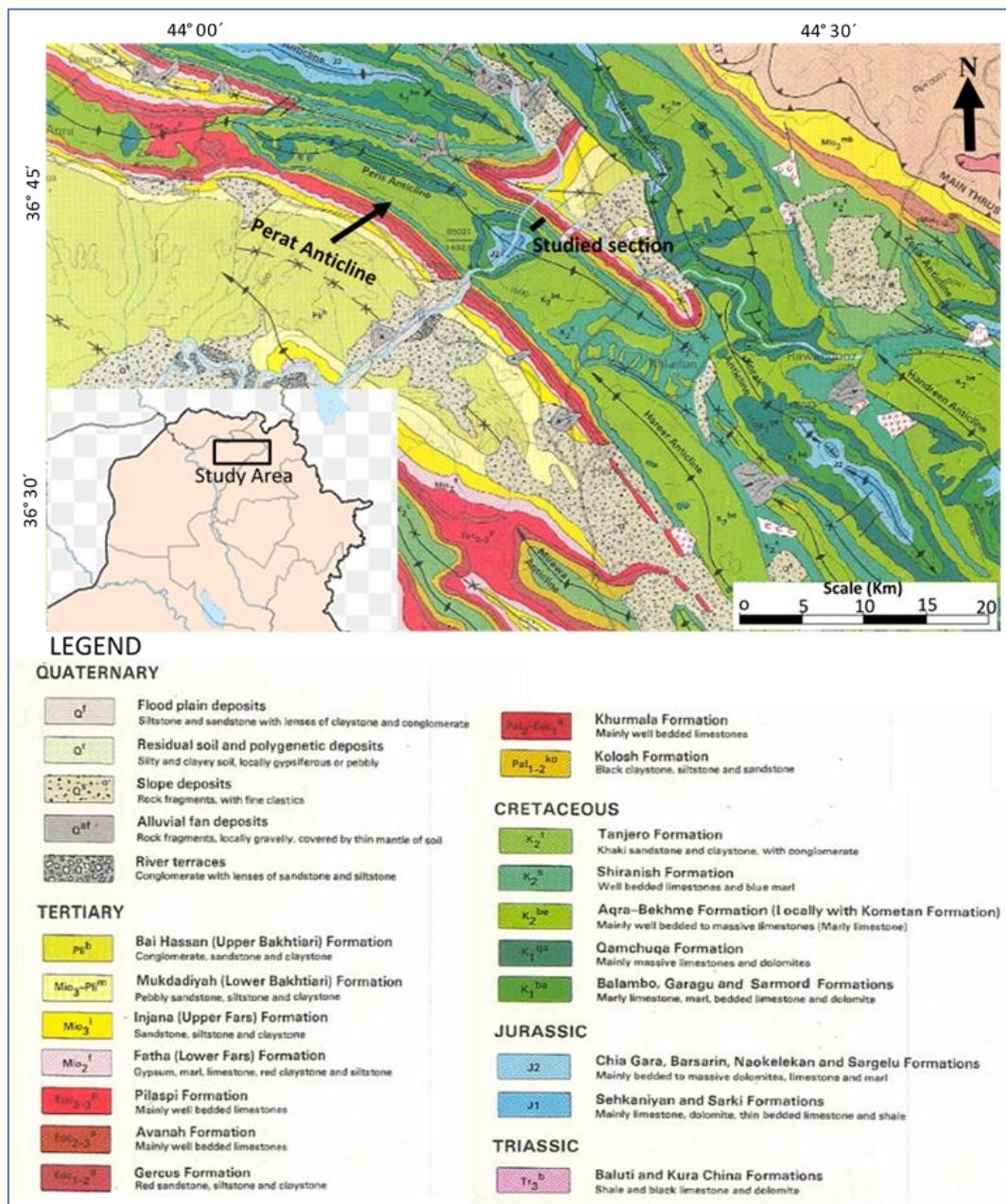


Fig. 1. Geological map of the studied area (after Sissakian et al., 1997).

Lithology: The studied section's thickness is approximately 154 m (Fig. 2). The lower contact of Shiranish Formation with Bekhma Formation is not clear due to its coverage by recent sediments. Gray marly limestone and pale gray limestone (30-150 cm thick) are intercalated by thin beds of pale green marl, which represent the bottom portion of the formation (Fig. 3), followed by sequences of pale green marl that are roughly 20 m thick. The middle portion is made up of a series of beds that are 40 cm to 2 m thick of pale grey argillaceous limestone, 30 cm to 3 m thick of greenish grey marly limestone, and 30 cm to 5 m thick of greenish marl (Fig. 4). Whereas the upper portion is distinguished by a predominance of greenish-grey marl beds mixed with a very small number of limestone beds, each is not thicker than 10 cm, and on its top, there are thick beds of light grey limestone (Fig. 5). The upper boundary is comfortable with the Tanjero Formation.

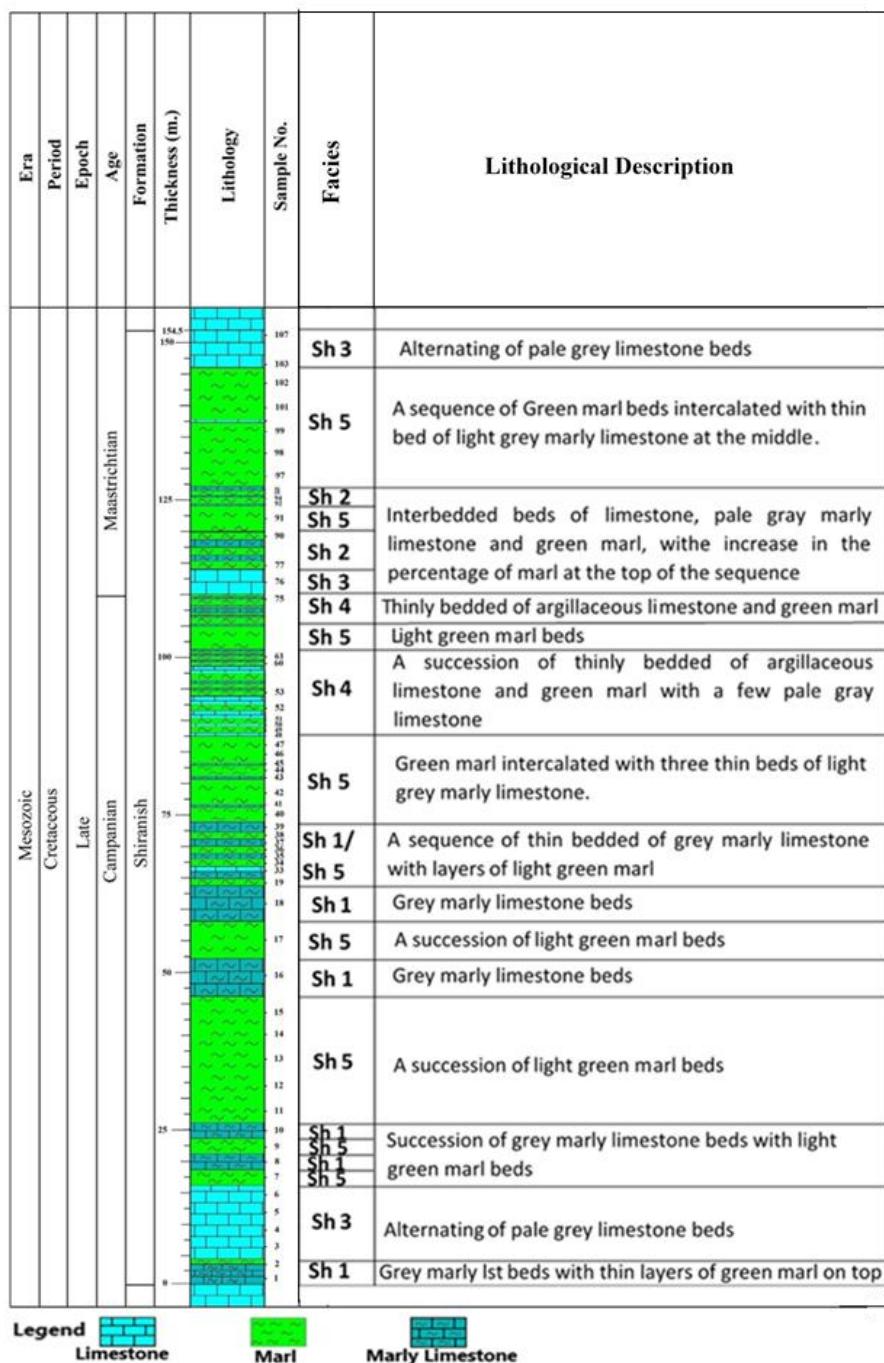


Fig. 2. Lithological column and facies types in the studied section.

Fig. 3. Lower part of Shiranish Formation in the study section.

Fig. 4. Middle part of Shiranish Formation in the study section.

Fig. 5. Uppermost part of Shiranish Formation in the study section

Materials and Methods

Based on changes in lithology between 50 cm and 4 m intervals, 107 samples were collected from the study area. An analysis is conducted on approximately fifty thin sections accomplished in the Department of Geology workshop, Mosul University, for petrographical description and facies analysis, which forms the basis of the current investigation. In addition, numerous samples are selected in order to examine the calcareous nannofossils and ascertain the age of formation. Armstrong and Brasire's (2005) techniques, as well as the transmitted light microscope (Italy, POL353-B Optika), are used for this purpose. The atlas map of Young and Bown (1997) is utilized for comparison with the results.

Facies Analysis

Sedimentological hints are utilized to ascertain the depositional environment for each of the five facies that make up the Shiranish Formation, which are identified as Sh1 through Sh5. These facies are as follows:

1- Globular Planktic Foraminiferal lime wackestone microfacies (Sh1)

The allochems make up roughly 40% of the facies' overall contents, and they are extensively distributed throughout the lower and middle portions. With a minor number of bivalvia and bioclasts, the majority is composed of globular foraminifera (Fig. 6A) such as *Heterohelix* and *Pseudotextularia*, with minimal keeled planktic foraminifera genera. The distribution of these materials is in a fine micrite ground. This facies are impacted at some levels by the dissolution process, which dissolved some fossils, and some are to be filled with calcite crystals in the form of sparse cement inside fossil skeletons. As a result, the overall evidence for this microfacies points to its deposition within middle-outer shelf settings (Leicke, 1987).

2- Keeled Planktic Foraminiferal lime wackestone microfacies (Sh2)

It is well documented in the formation's upper parts, with fossils making up roughly 30–40% of the facies' overall composition. Large and well-preserved keeled foraminifera make up the majority of this facies (*Globotruncana* and *Globotruncanita*), with a small number of globular forms (Fig. 6B). Moreover, a very few benthic foraminifera and bioclastics with some irregular quartz crystals (chalcedony) are seen. Occasionally, certain diagenetic processes affect this facies, such as recrystallization into microspar and cementation in the form of sparry calcite crystals inside the fossil shells. The sedimentological and biological evidences of this microfacies indicate that it was deposited in the upper bathyal zones (Leicke, 1987; Koutsoukos and Hart, 1990).

3- Bioclastic lime wackestone microfacies (Sh3)

Hard limestone beds with a pale grey color make up this facies, which are found in all the formation's parts (lower, middle, and upper). Although a few bivalve shells and planktic foraminifera are present, the shell debris makes up the majority of this facies' composition (up to 20–30% of the total) (Fig. 6C). This facies are affected by some diagenetic processes, especially neomorphism resulting from recrystallization of micrite, and the presence of sparry cement in a scattered manner within the micrite, in addition to documenting the effect of the dissolution process on some shells. According to Flügel (2004), this microfacies was deposited in the uppermost regions of the outer shelf.

4- Argillaceous Planktic Foraminiferal lime packstone microfacies (Sh4)

This facies consists of limestone beds with a tiny quantity of clay in the micritic matrix, and it is located in the middle and upper parts of the formation, primarily composed of globular planktic foraminifera, which make up roughly 50% of the total components (Fig. 6D). There are also some rock fragments and a tiny amount of shell debris in addition to iron oxides in a fair percentage. The existence of fractures and vugs porosity in this facies indicates that it is impacted by the dissolution process to some extent (Al-Fandi *et al.*, 2023). The sedimentary and skeletal criteria of this microfacies suggest the middle shelf environment (Gibson, 1989; Flügel, 2004).

5- Marl lithofacies (Sh5)

The thickness of this facies ranges from 1-20 m, and is evidently the dominant property among the formation sequences as reported throughout the studied section. This facies are composed of light green friable marl sequences that are occasionally intercalated with thin beds of pale grey marly limestone. These beds are distinguished by a high percentage of planktic foraminifera up to 40%. At certain levels, the dominance of keeled-shaped planktic foraminifera

is observed, while the prevalence of globular planktic foraminifera is predominant at other levels. This facies were deposited within a sedimentary range that extends from upper bathyal to outer shelf (Gibson, 1989; Flügel, 2004).

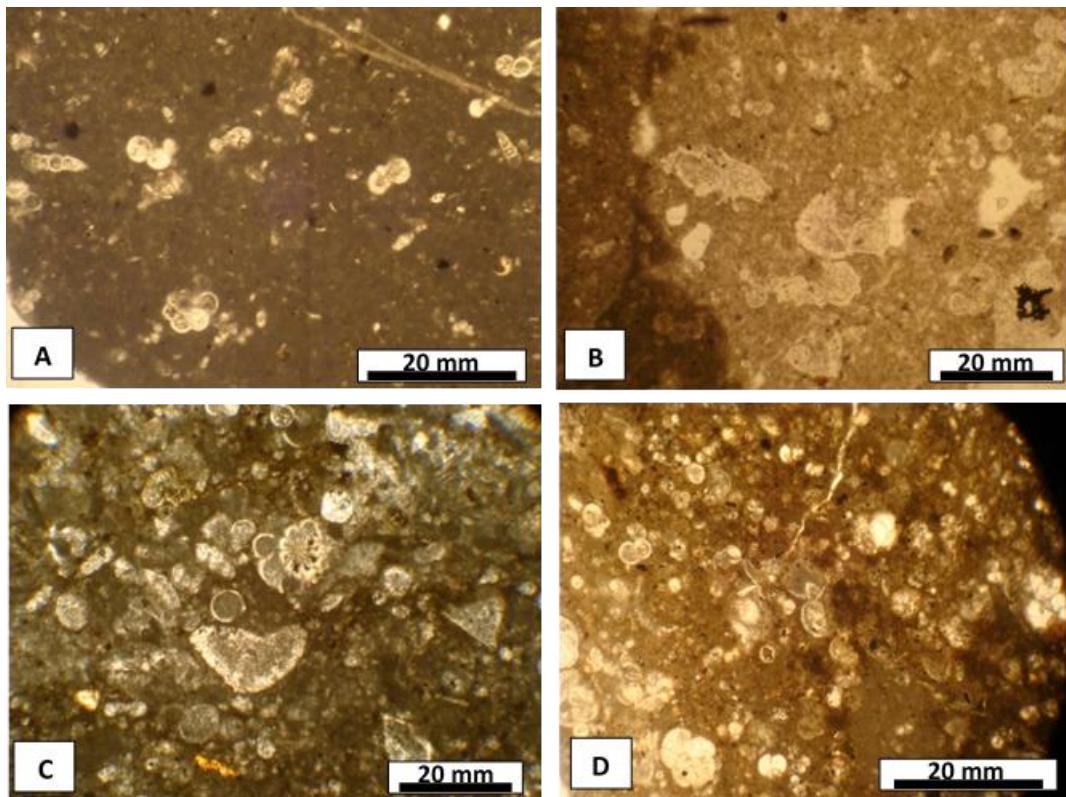


Fig. 6. Studied facies, A-Sh1, B-Sh2, C-Sh3, and D-Sh4.

Nannobiostatigraphy

In this investigation, twenty-four species from sixteen genera and ten families are identified. They are: *Ahmuellerella alboradiata*, *Reinhardtites levis*, *Tranolithus phacelosus*, *Zeugrhabdotus embergeri*, *Eiffellithus collis*, *Eiffellithus eximius*, *Cribrosphaerella ehrenbergii*, *Prediscosphaera columnata*, *Retecapsa crenulata*, *Retecapsa schizbrachiata*, *Retecapsa ficula*, *Watznaueria barnesae*, *Watznauria coronata*, *Watznauria bipora*, *Broinsonia parca*, *Calculites obscurus*, *Lithraphidites quadratus*, *Microrhadulus decuratus*, *Micula decussata*, *Micula staurophora*, *Uniplanarius trifidus*, *Ceratolithoides aculeus*, *Ceratolithoides prominens* and *Ceratolithoides sagittatus*. (Figs. 7 and 8).

The detected calcareous nannofossil taxa in the examined section (Fig. 9) can be classified into three biozones based on their correlation with other places of the world (Sissingh, 1977) (Fig. 10); these zones are;

1- *Uniplanarius trifidus* Interval Biozone (cc22) (part)

Definition: The time interval is between the first occurrence of *Uniplanarius trifidus* (Vekshina, 1959) and the last recorded *Eiffelithus eximius* Stover, 1966.

Thickness: 46 m.

Discussion and Boundaries: The bottom boundary of this biozone, which is not exposed in the area under study, is marked by the first appearance of *Quadruplanus trifidus* Vekshina (1959), while the last occurrence of *Eiffelithus eximius* Stover, 1966, marks the upper boundary. The last occurrence of *Eiffelithus eximius* Stover, 1966, coincided with the first occurrence of *Reinhardtites anthophorus* (Deflandre, 1959). This zone is similar to

the *Quadrupelis trifidum* biozone described by Bukry and Bramlette (1970), which was broadened by Sissingh (1977) to include the Late Campanian period (Ogg *et al.* 2016).

2- *Tranolithus phacelosus* Interval Biozone (cc23) (Part)

Definition: The time interval is between the last recorded instance of *Eiffelithius eximius* Stover, 1966, and the last recorded instance of *Tranolithus phacelosus* Stover (1966).

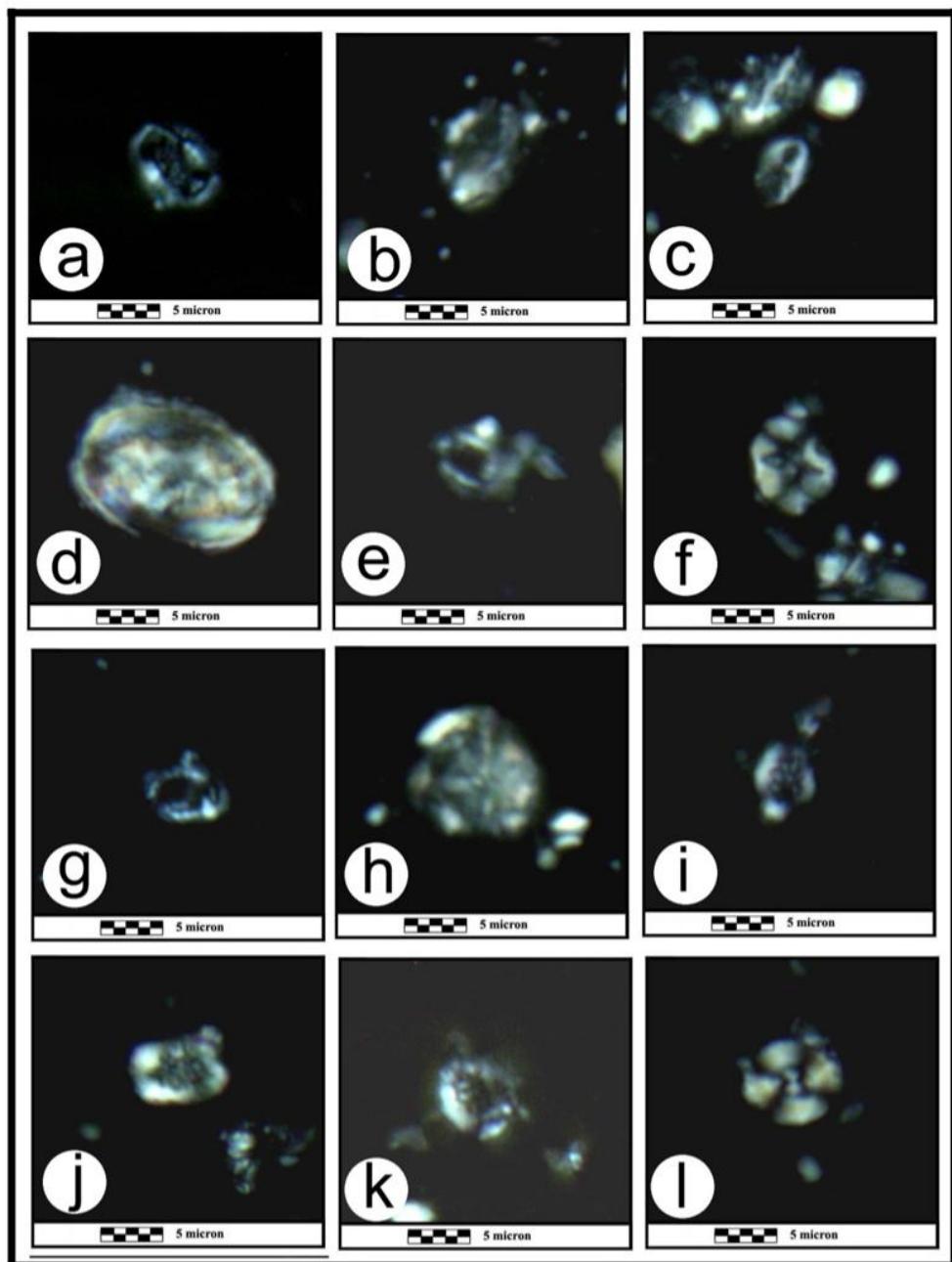
Thickness: 64 m.

Discussion and Boundaries: The lower contact is marked by the last recorded *Eiffelithius eximius* Stover, 1966; the upper contact was indicated by the last documented data of *Tranolithus phacelosus* Stover (1966). This zone exhibited a correlation with Sissingh's (1977) *Tranolithus phacelosus* zone, which was dated as the Latest Campanian to Early Maastrichtian period (Ogg *et al.* 2016).

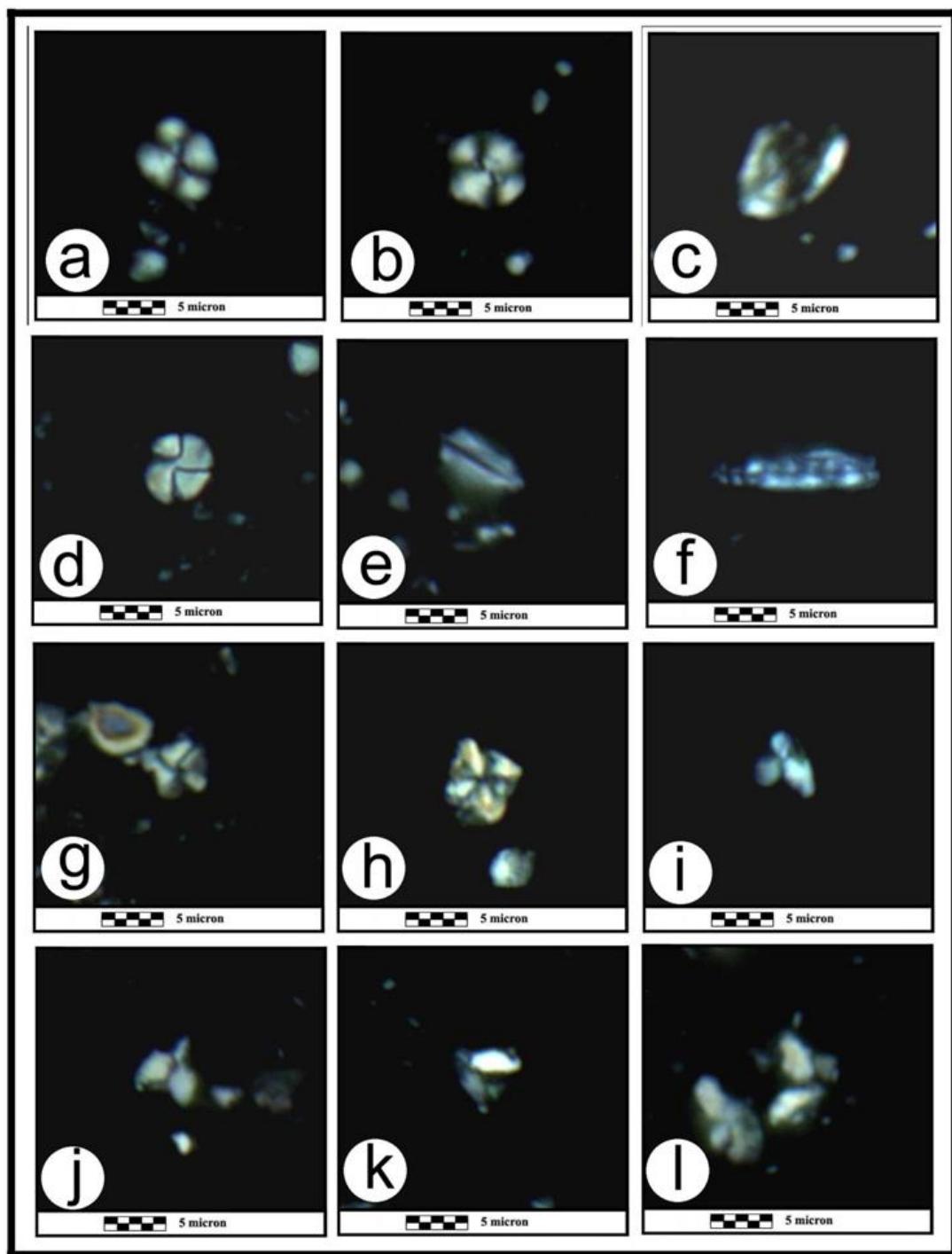
3- *Reinhardites levius* Interval Biozone (cc24) (part)

Definition: an interval is between the last recorded instance of *Tranolithus phacelosus* Stover (1966) and the last recorded instance of *Reinhardites levius* (Sissingh, 1977).

Thickness: 44.5 m.


Discussion and Boundaries: the lower boundary is indicated by the last recorded instance of *Tranolithus phacelosus* Stover (1966); the upper limit is not included in the section under study. This zone is similar to *Reinhardites levius* (cc24) by Perch-Nielsen (1979) and Sissingh (1977), *Arkhangeskilla cymbiformis* by Doeven (1983), and *Lithraphidites praequardatus* by Roth (1978), aged Early Maastrichtian. Therefore, the age of this zone is Early Maastrichtian (Ogg *et al.* 2016).

Depositional Environment


The evidence of the five sedimentary facies previously described in the facies analysis section will be the main emphasis of the discussion of the depositional environment of the studied formation, as follows:

In general, the high and diverse proportions of planktic foraminifera in the current study samples indicate an outer shelf environment (Berggren and Miller, 1989; Gibson, 1989). Additionally, the greater frequency of globular planktic foraminifera compared to keeled planktic foraminifera (Sh1) implies the existence of this facies on the continental shelf and in warm waters (Leicke, 1987). An environment near the coast is also suggested by the rise in *Heterohelix* individuals in some parts of this facies (Leicke, 1987). As a result, the overall evidences for facies (Sh1) point to its deposition within middle-outer shelf settings. Conversely, in the other parts of the studied section, high and varied proportions of keeled planktic foraminifera (Sh2) are exhibited, indicating deep marine settings distant from the shore, particularly in the upper bathyal zones (Leicke, 1987; Koutsoukos and Hart, 1990; Omana, 2006). On the other hand, the dominance of shell debris in microfacies (Sh3) suggests that this facies were deposited on the uppermost regions of the outer shelf (Wilson, 1975; Scholle *et al.*, 1983; Flügel, 2004). However, the existence of argillaceous limestone facies with planktic foraminifera (Sh4) suggests the deposition in the middle shelf environment (Gibson, 1989; Flügel, 1982 and 2004). The distribution of the marl facies (Sh5) with its two types of planktic foraminifera, which are globular in some areas and keeled in others, suggests that this facies was deposited within a sedimentary range that reaches the upper bathyal from the outer shelf. (Berggren and Miller, 1989; Gibson, 1989; Samir, 2002).

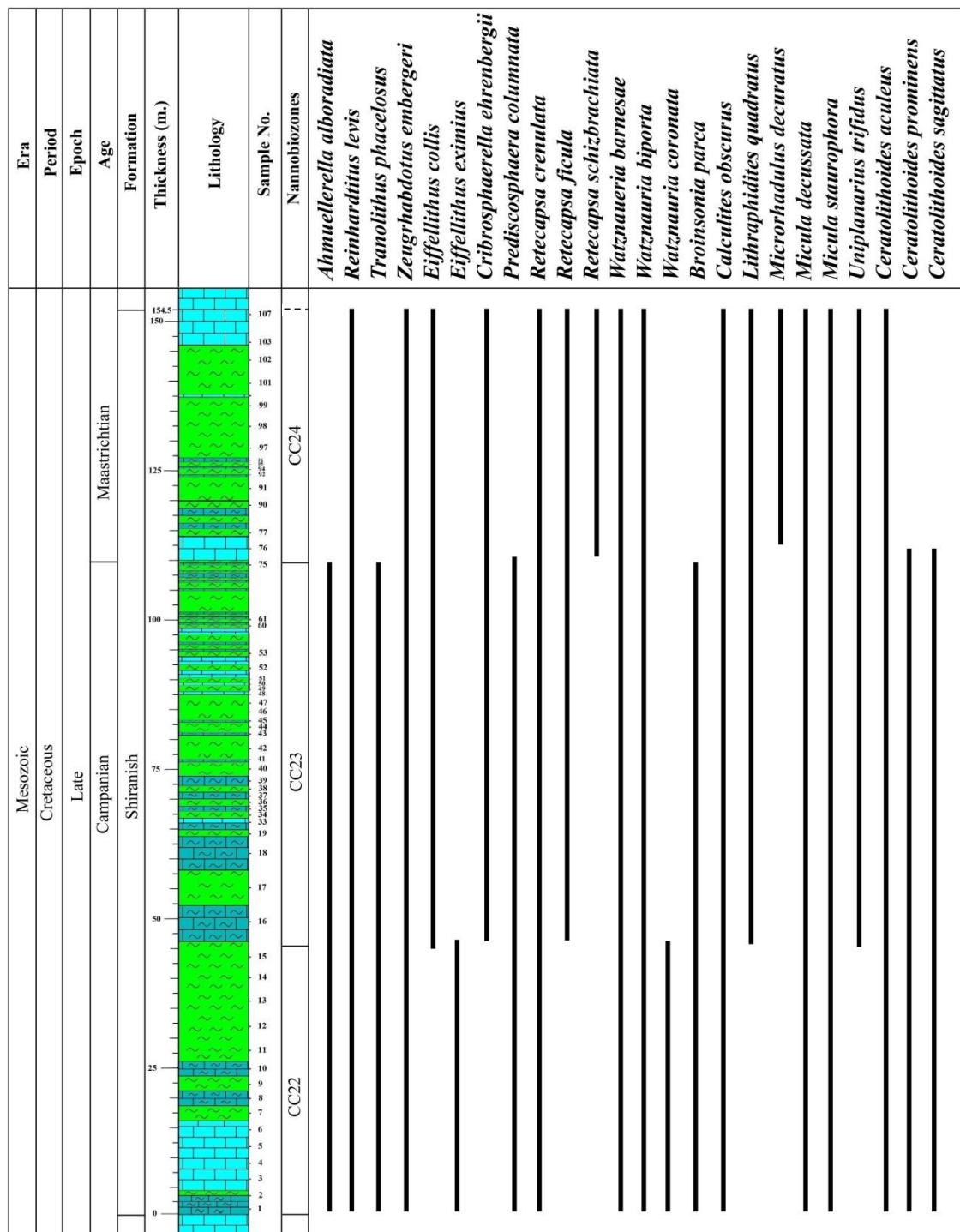

As previously aforementioned, the Shiranish Formation's depositional environment on the northern limb of the Perat Anticline stretches from the middle shelf to the upper bathyal.

Fig. 7. Distinguished calcareous nannofossils from the studied Formation. (a) Ahmuellerella alboradiata; (b) Reinhardtites levis; (c) Tranolithus phacelosus; (d) Zeugrhabdotus embergeri; (e) Eiffellithus collis; (f) Eiffellithus eximius; (g) Cribrosphaerella ehrenbergii; (h) Prediscosphaera columnata; (i) Retecapsa crenulata; (j) Retecapsa ficula; (k) Retecapsa schizbrachiata; (l) Watznaueria barnesae.

Fig. 8. Significant calcareous nannofossil taxa from the studied Formation. (a) *Watznauria biporta*; (b) *Watznauria coronata*; (c) *Broinsonia parca*; (d) *Calculites obscurus*; (e) *Lithraphidites paequadratus*; (f) *Microrhadulus decoratus*; (g) *Micula decussata*; (h) *Micula staurophora*; (i) *Uniplanarius trifidus*; (j) *Ceratolithoides aculeus*; (k) *Ceratolithoides prominens*; (l) *Ceratolithoides sagittatus*.

Fig. 9. Distribution chart of calcareous nannofossils for the study section.

Ma	Period	Epoch	Age	Sissingh, 1977	Perch-Nielsen, 1985	Bown, 1998	Age	Present study
68				CC25	CC25	UC19		NOT STUDY
69						UC18		
70				CC 24	CC 24	UC17		CC 24
71								
72								
73								
74				CC23	CC23	UC16	L	CC23
75								
76				CC22	CC22			CC22
77				CC21	CC21			
78				CC20	CC20			
79				CC19	CC19			
80				CC18	CC18	UC14		NOT STUDY
81				CC17	CC17	UC13		
82						UC12		
83								
84								
85				CC16	CC16	UC11		

Fig. 10. Biozones of calcareous nannofossils and their age correlation chart (Ogg et al., 2016).

Conclusions

The Shiranish Formation is classified into three biozones according to the distribution of the calcareous nannofossil assemblage. These biozones are: the *Uniplanarius trifidus* Interval Biozone (cc22), *Tranolithus phacelosus* Interval Biozone (Part) (cc23), and *Reinhardites levis* Interval Biozone (cc24). They are dated from Late Campanian to Early Maastrichtian. On the other hand, the study of sedimentary facies has revealed the diagnosis of five microfacies, which are: Globular Planktic Foraminiferal lime wackestone microfacies (Sh1), Keeled Planktic Foraminiferal lime wackestone microfacies (Sh2), Bioclastic lime wackestone microfacies (Sh3), Argillaceous Planktic Foraminiferal lime packstone microfacies (Sh4), and Marl lithofacies (Sh5). The distinctive feature of the microfacies under study indicates that the Shiranish Formation, which is located in the northern limb of the Perat anticline, was deposited on the middle shelf to the upper bathyal.

Acknowledgements

For providing facilities that enhanced the caliber of this study, the authors are appreciative to the College of Environmental Sciences, College of Sciences, and College of Petroleum and Mining Engineering, University of Mosul.

References

Al-Atroshi, R. Kh., 2007. Facies analysis and sedimentary model of Shiranish Formation successions in Dohuk area. Unpublished MSc Thesis, College of Science, University of Mosul, 131 P.

Al-Bdrani, O.A., 2001. Biostratigraphy and paleoecology of Upper Cretaceous ammonites for the lower part of Shiranish Formation northwest Iraq. MSc Thesis, University of Mosul, Iraq. 104 P.

Al-Fandi, E.I., Al-Abbasi, M.W. and Malak, Z.A., 2023. Porosity Evolution and Sequence Stratigraphy of Khasib Formation (Late Turonian-Coniacian) in Selected Oilfields, Central Iraq. Iraqi Geological Journal, Vol. 56, (2E), pp. 244-255. [DOI: 10.46717/igj.56.2E.17ms-2023-11-22](https://doi.org/10.46717/igj.56.2E.17ms-2023-11-22)

Al-Mutwali, M.M. and Al-Juboury, F.N., 2005. Litho and Biostratigraphy of the Shiranish Formation (Late Campanian-Late Maastrichtian) In Sinjar Area, Northwestern Iraq. Rafidain Journal of Science, Vol. 16, No. 1, pp. 152-176.

Al-Dulaimi, A.M., Al-Haj, M.A., Al-Badrani, O.A. and Al-Juboury, A.I., 2023. Lithostratigraphy and Biostratigraphy of the Shiranish Formation (Late Campanian-Maastrichtian) in Diana area, Northern Iraq. Iraqi Journal of Science, Vol. 64, No. 3, pp. 1268-1284. <https://doi.org/10.24996/ij.s.2023.64.3.22>

Al-Qayim, B., Habib, H.R. and Al-Dyni, N., 1986. Petrology and geochemistry of Shiranish Formation (type section) towards sedimentary facies interpretation. Journal Geological Society of Iraq, Vol. 19, No.3, pp. 123-136.

Al-Rashidi, M.A., 2013. Sedimentological and Stratigraphical Study of Upper Cretaceous (Late Campanian –Maastrichtian Successions in Selected Areas, Northern Iraq. Unpublished Ph. D. Thesis, University of Mosul, 240 P. (In Arabic).

Armstrong, H. and Brasier, M., 2005. Microfossils, Blackwell Publishing, 296 P.

Bamarni, A.A., 2010. Biostratigraphy Of the Shiranish Formation in The Subsurface Section of Khanke Well No.1, Duhok Area, North of Iraq. Unpublished MSc Thesis, College of Science, University of Mosul, 111 P.

Bellen, Van R.C., Dunnington, H.V., Wetzel, R. and Morton, D.M., 1959. Laxique statigraphique international Asia, Fascicule, 10a, Iraq, Paris, 333 P.

Berggren, W.A. and Miller, K.G., 1989. Cenozoic bathyal and abyssal calcareous benthonic foraminiferal zonation. Micropaleontology, Vol. 35, No. 4, pp. 308-320.

Bown, P.R., 1998. Calcareous Nannofossil Biostratigraphy. British Micropalaeontological Society Publications Series. Chapman and Hall, London, pp.132-199.

Bukry, D. and Bramlette, M.N., 1970. Coccolith age determination Leg 3. Deep Sea Drilling Project. Initial Rep. Deep Sea drill. Proj., 3. Pp. 589-611.

Deflandre, G., 1959. On calcareous nannofossils and their systematics. Rev. Micropaleontology, Vol. 2, No. 3, pp. 127-152.

Doeven, P.H., 1983. Cretaceous nannofossil stratigraphy and paleoecology of the Canadian Atlantic Margin. Bull. Geol Surv. Can., 356, pp. 1-70.

Flügel, E., 1982. Microfacies analysis of limestone. Springer-Verlag, Berlin, 663 pages.

Flügel, E., 2004. Microfacies of Carbonate Rock, Analysis, Interpretation and Application, Springer-Verlag, Berlin, 976 P.

Gibson, T.G., 1989. Planktic benthonic foraminiferal ratios: Modern patterns and Tertiary application. *Marine Micropaleontology*, vol. 15, pp. 29-52.

Koutsoukos, A.M. and Hart, M.B., 1990. Cretaceous foraminiferal morphogroup distribution patterns, paleocommunities and trophic structures: A case study from the Sergipe Basin. *Brazil Transactions of the Royal Society of Edinburgh, Earth Science*, Vol. 81, pp. 221-246.

Leicke, R.M., 1987. Paleoecology of mid-Cretaceous planktic foraminifera: A comparison of open ocean and epicontinental sea assemblages. *Micropaleontology*, Vol. 33, No.2, pp. 164-176.

Ogg, J.G., Ogg, G. and Gradstein, F.M., 2016. *A Concise Geologic Time Scale*: Amsterdam, Elsevier, 240 P.

Omana, L., 2006. Late Cretaceous (Maastrichtian) foraminiferal assemblage from the inoceramid beds, Ocozocoulta formation, central Chiapas. *Ciencias Geologicas*, Vol. 23, No. 2, pp. 125-132.

Perch-Nielsen, K., 1979. Calcareous nannofossils from the Cretaceous between the North Sea and the Mediterranean. *Aspekte der Kreide Europas, IUGS Series A*, Vol. 6, pp. 223-272.

Perch-Nielsen, K., 1985. Validation of new combinations. *Newsletter of the International Nannoplankton Association*, Vol. 6, No. 1, pp. 42-46.

Roth, P.H., 1978. Cretaceous nannoplankton biostratigraphy and oceanography of the Northwestern Atlantic Ocean. *Initial Rep. Deep Sea drill. Proj.*, 44, pp. 731-59.

Samir, A.M., 2002. Biostratigraphy and paleoenvironmental changes in the Upper Cretaceous-Early Paleogene deposits of Gabal Samara section, southwestern Sinai, Egypt. *Journal of Paleontology*, Vol. 2, pp. 1-40.

Scholle P.A., Arthur M.A. and Ekdale A.A., 1983. Pelagic environment, in: Scholle P.A., Bebout, D.G. and Moore, C.H., Carbonate depositional environments. *American Association of Petroleum Geologists Memoir* 33, pp. 620-681.

Sissakian, V. K., Mahdi, A. I., Amin, R. M. and Mohammed, B.S., 1997. The Nfayil Formation. A new lithostratigraphic unit in Iraq. *Iraqi Geol. Jour.*, Vol. 30, No. 1.

Sissingh, W., 1977. Biostratigraphy of Cretaceous Calcareous Nannoplankton. In Bolli, H.M., Saunders, J.B., and Perch-Nielsen, K. (eds.), 1985. *Plankton Stratigraphy*. Cambridge University Press, Cambridge, pp. 329 – 426.

Stover, E., 1966. Cretaceous coccoliths and associated nannofossils from France and Netherlands. *Micropaleontology*, Vol. 12, No. 2, pp. 133-167.

Vekshina, V.N., 1959. Coccolithophoridae of the Maastrichtian deposits of the West Siberian lowland. *Trudy Sibir. Nauch-Issled. Inst. Geol. Geofiz. Min. Syrya*, Vol. 2, pp. 56-81.

Wilson, J.L., 1975. Carbonate facies in geological history. Springer- Verlag, Berlin, 471 P.

Young, J.R. and Bown, P.R., 1997. Cenozoic Calcareous Nannoplankton Classification, *Journal of Nannoplankton Research*, Vol. 19, pp. 36-47.